• ベストアンサー

3次元空間内の直線の方程式

3次元空間内の直線の方程式の一般形は何でしょうか? 私の考えでは、2つの平面が交わった線として表すのでは ないかと思いますが、どうでしょうか?つまり aX+bY+cZ+d=0 eX+fY+gZ+h=0 いかがでしょうか?

  • prome
  • お礼率73% (74/101)

質問者が選んだベストアンサー

  • ベストアンサー
  • shushou
  • ベストアンサー率51% (16/31)
回答No.3

2点A,Bを通る直線の式は、 Oを原点、直線上の任意の点をPとし、 OPベクトルをp,OAベクトルをa,ABベクトルをdで表したとき p=a+td  (tは実数) とかけます。 たとえば2点A(-1,-2,-3),B(4,5,6)を通る直線の式は p=(x,y,z)としたとき (x,y,z)=(-1,-2,-3)+t(5,7,9) となります。x,y,zはtの1次式で表されているので すべてをt= の形に直すと (x+1)/5=(y+2)/7=(z+3)/9 となり、こんなふうに直線ABを表現することも可能です。 もちろんpromeさんの表現の仕方も直線を表す1つの方法です。

prome
質問者

お礼

ありがとうございました。高校で習ったのを思い出しました。

その他の回答 (2)

  • ametsuchi
  • ベストアンサー率31% (81/257)
回答No.2

数学ではなく、3D幾何計算ライブラリーとしてなら、 ・直線の通る点(px,py,pz) ・直線の方向(単位ベクトル,vx,vy,vz) が多いように思います。これが普通かどうかは知りません。

  • ranx
  • ベストアンサー率24% (357/1463)
回答No.1

確かにその方法もあります。 目的に合わせて適切なやり方を選べばよいと思うのですが、 一般的には媒介変数を使うのが便利ではないでしょうか。 x=λt+α y=μt+β z=νt+γ

関連するQ&A

  • 三次元ユークリッド空間上の直線の方程式は?

    三次元ユークリッド空間上で,直交座標を x, y, z とする時, 任意の平面は,a, b, c, d を実数として(abc ≠ 0), ax + by + cz + d = 0 で表されます. では,三次元ユークリッド空間上の任意の或る一つの直線の方程式は, 直交座標を x, y, z とする時,一般的に,どの様に表現されるのでしょうか? どなたか,教えて下さい.

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 空間の方程式

    空間ベクトルの問題を解いてて思ったのですが、、 xyz空間に存在する直線を『ax+by+cz+d=0』のようなかたちであらわすことは可能ですか?

  • 全ての直線をあらわす方程式

    y=ax+bが平面上の全ての直線をあらわす方程式ではなく、 ax+by+c=0が平面上の全ての直線をあらわす方程式である理由ってなんですか?

  • 3次元における回帰直線について

    3次元空間の中で3次元座標値(Xn,Yn,Zn)を持ったいくつか(5,6個)の点から回帰を行い1本の直線の式あるいはベクトルとして見いだすことは可能でしょうか?回帰平面としてz=ax+by+cという式にする方法は分かったのですが、ただ3次元の中での直線というものもいまいち理解していないのですが・・・。数学的知識が乏しくてお恥ずかしいのですがm(_ _)m

  • 平面方程式について

    平面方程式について教えてください。 平面方程式はax+by+cz+d=0で教科書には書いてあるのですが ウェブで検索するとz=ax+by+cと書いてありました。 これはなぜなのでしょうか?? どのように変形したらいいのでしょうか? 教えてください お願いします

  • 空間図形の点と直線の距離の公式について

    xyz空間内の点P(p,q,r)から平面ax+by+cz=dにおろした垂線の長さを求めよ という問題(というか公式を示す証明)を見たときに、 (解) 平面ax+by+cz=dに垂直なベクトルのひとつを v→=(a,b,c) とする。平面ax+by+cz=d上にA(x0,y0,z0)をとると、求める長さは h=|AP→・v→|÷|v→| である。 (x0,y0,z0)がax0+by0+cz0=dを満たすことから、 h=|AP→・v→|÷|v→| =|(p-x0,q-y0,r-z0)・(a,b,c)|÷√(a^2+b^2+c^2) =|ap+bq+cr-d|÷√(a^2+b^2+c^2) となっていたのですが、どうしても h=|AP→・v→|÷|v→|である。 の部分が理解できません。検索して調べてみても分からず、結局内積とはなんだろう?と言うところまで調べてみたのですが、2つのベクトルがどれだけ似ているかを示す量、とだけ書いてあるくらいでさっぱり分かりません。 そこで、 (1)なぜ、hが上の式のようになるのでしょうか? (2)幾何学的な意味としては内積は何を表すものなのでしょうか? 以上2点、よろしくお願いいたします。

  • 三次元空間での直線の式

    二次元で直線の式はy=ax+bとなることはわかります。では三次元になるとどうなるのですか?直感としては、z=ax+by+cとなるかな~と考えているのですが、これでは一直線じゃないような気もします。どなたか教えてください。また、できれば4次元以上ではどうなるのかも教えてほしいです。よろしくお願いします。

  • n次元空間での直線・平面・立体....の式

    ベクトルについて勉強していて疑問に思ったことがあるので質問します。 n次空間で、点(x1,x2,x3,....xn)=xo↑の位置ベクトルを通り、方向がa↑=(a1,a2,a3....an)の直線の式は、tを媒介変数として、 v↑=a↑t+xo↑で表すことができます。 2次元だったら、 v1=a1•t+x1 v2=a2•t+x2 より、 (v1-x1)/a1=(v2-x2)/a2=t v1をx、v2をy、x1をa、x2をb、a2/a1をm と書き直すと見慣れた直線の式 y-b=m(x-a)になりますね。 3次元では、 (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=t となります。 これは、 (a,b,c)を通り、ベクトル方向が(l,m,n) である直線の式 (x-a)/l=(y-b)/m=(x-c)/n と同じ形です。 ということは、n次元の直線の式は、 (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=....(vn-xn)/an=t ですよね。 直線の式は、n次元に拡張できました。 次に平面の式を考えます。 3次元空間内における平面(2次元)とは、ある1つの直線に直交した面です。 その平面上の定点を(x1,x2,x3)=xo↑とします。 任意の位置ベクトルを(v1,v2,v3)=v↑として、ある1つの直線の方向ベクトルを (a1,a2,a3)=a↑とします。 平面上の任意のベクトルとa↑は、直交するので、 内積=0 すなわち、〈v↑-xo↑・a↑〉=0がなりますね。 成分で書くと、 a1(v1-x1)+a2(v2-x2)+a3(v3-x3)=0 ですね。 a↑に独立なベクトルは、3次元空間上に2本取れます。 すなわち、これは「面(2次元)」ですね。 a1をa、a2をb、a3をc、v1をx、v2をy、v3をzに書き直すと、 これは、平面の式 ax+by+cz=d になります。 このように、3次元空間では、2次元の面と1次元の直線が考えることができました。 そこで、これを4次元に拡張してみました。 4次元空間では、直線は、 (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=(v4-x4)/a4=t ですね。 この直線と直交する線は、3本あります。 〈v↑-xo↑・a↑〉=0 なので、成分で表すと、 a1(v1-x1)+a2(v2-x2)+a3(v3-x3)+a4(v4-x4)=0....(1) ですね。 ここで、質問ですが、(1)の式は、独立した3つのベクトルを含むので、「立体(3次元)」と言ってもいいのでしょうか? もし、その認識が正しかったら、 4次元空間上での立体(3次元)の式は、xyzuを変数として、 一般にax+by+cz+du=e という式で表すことができるという認識は正しいですか? 4次元空間での直線(1次元空間)の式は、先に示したように (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=(v4-x4)/a4 ですね。 3次元空間だったら、2次元空間の面と1次元空間の直線を式で書くことができました。 4次元空間だったら、3次元空間の立体と1次元空間の直線は、式として与えらると考えると、 4次元空間上での「面(2次元)」の式は、存在するのですか? n次元に拡張したら、 a1x1+a2x2+a3x3+.......anxn=kという式は、 は、(n-1)次元空間を表す式であると言っていいのでしょうか? また、その時、 (n-2)次元空間を表す式 (n-3)次元空間を表す式....は考えることができるのでしょうか? 多分、専門書などを解読すれば答えは見つかるかもしれませんが、自分でこのような疑問を思ったので投稿しました。

  • 3次元ユークリッド空間内の直線

    3次元ユークリッド空間内の直線 連立1次方程式 y-2z=1 2x+2y+az=b 4x+3y=b 2x+y+z=c a,b,cは実数とします。 Q 方程式の解の全体が3次元ユークリッド空間内の直線になっているとき a,b,cの間に成り立つ関係を述べよ。 またその直線を表す方程式を求めよ 全然わかりません。 解の全体が3次元ユークリッド空間内の直線になるとは どのような状態のことなんでしょうか? よろしくお願いします