• ベストアンサー
  • すぐに回答を!

単振動の問題がわかりません。教えてください。

タイトルのままなのですが、単振動に関する問題がわかりません。特に応用問題となるとさっぱりで頭がこんがらがってしまいます。ですので、この問題は、どう解いたらよいのでしょうか。お願いします。一応、下手ではありますが、図も添付しました。 なめらかな水平な面の上に、左端を固定されたばねにつながれた質量mのおもりがばねの長さが自然長の状態で静止している。おもりに左向き初速Vを与えたところ、おもりは振動し始めた。ばね定数をk、始めにおもりが静止していた自然長での位置を原点O、右向きを正としてX軸をとるとき、以下の問いに答えよ。 (1)おもりについての運動方程式を求めよ。 (2)X(t)=Asin(ωt+φ)がこの運動式の解であることを示せ。ただし、ω=√k/mとする。 (3)この運動の初期条件を示せ。 (4)上の初期条件より、Aとφを求めよ。 (5)このとき、ばねは最大でどこまで伸びるか。その値を求めよ。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数400
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • suko22
  • ベストアンサー率69% (325/469)

なめらかな面上なので摩擦力は無視できます。 (1)物体が受ける力Fの方向はばねをもとの長さに戻る方向になるから、  フックの法則から時刻tにおける変位をx(t)とするとF=-k*x(t)となる  よって運動方程式は、m*d^2x(t)/dt=-k*x(t) (2)x(t)=Asin(ωt+Φ)の両辺をtで微分する  dx(t)/dt=Aωcos(ωt+Φ)  さらに両辺をtで微分する d^2x(t)/dt=-Aω^2sin(ωt+Φ) この式にω=√(k/m)を代入  d^2x(t)/dt=-A(k/m)sin(ωt+Φ)=-(k/m)*x(t)  これを(1)式の左辺に代入すると、  (左辺)=m*d^2x(t)/t=-m*(k/m)*x(t)=-k*x(t)=(右辺)  (1)式が成り立ったので、与えられたx(t)は(1)の運動方程式の解である。 (3)初期条件はt=0でx(0)=0,v(0)=V (4)x(0)=0より  x(0)=Asin(ω*0+Φ)=0 Asin(Φ)=0・・・i v(0)=0より  v(0)=Aωcos(ω*0+Φ)=V Aωcos(Φ)=V ωは定数だから、両辺をωで割って  Acos(Φ)=V/ω・・・ii  i、iiより  A^2*sin^2(Φ)+A^2*cos(Φ)=(V/ω)^2 A^2(sin^2(Φ)+cos^2)=(V/ω)^2 A^2=(V/ω)^2 A=±(V/ω)  iよりsin(Φ)=0 よってΦ=0,-π (5)x(t)=Asin(ωt+Φ)において  任意の時刻tにおいてω、Φは定数だから  -1≦sin(ωt+Φ)≦1 が成り立つ。  両辺にAをかけると  -A≦Asin(ωt+Φ)≦A  -A≦x(t)≦A  よってx(t)の最大振幅はA、すなわち(4)よりV/ω 考え方はあっていると思うのですが、(1)で問題文では使われていない文字を使っていたり、 (4)のΦの値についてΦの範囲が書いていなかったので、解答のようにきめましたが、 もしかすると考察が不十分かもしれません。 なにかあったら補足してください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとございました。自分は、問題を読んでも全然理解ができなかったのですが、丁寧に解説してくれたのでわかりやすかったです。今後も質問した際は、お願いします。

関連するQ&A

  • 単振動の問題です。よろしくお願いします。

    教科書の問題を解いていたのですが、解答も載っていなくてわからなかったので教えてもらえないでしょうか。 自然の長さがdで質量を無視できるばねがある。ばねの上端を天井に固定し、質量mの重りを吊るしたら、長さaだけ伸びて静止した。次に、bだけ伸ばして静かに離したら重りは振動を始めた。鉛直方向を始めに重りが静止していた位置を原点OとしたX軸(下向きを正)、重力加速度の大きさはgとし、ばね定数kとした場合以下の問いに答えよ。 (1)重りが静止しているときの力のつり合い式はいくらか。また、ばねの伸びaはいくらか。 (2)時刻tでの重りの位置をX(t)として、重りの運動方程式はいくらか。 (3)X(t)=Asin(ωt+φ)がこの運動方程式の解であること証明せよ。(ただし、ω=√k/mとする) (4)この運動の初期条件は? (5)(4)の初期条件より、Aとφを求めよ。

  • 物理 単振動

    ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。

  • 物理のフックの法則の問題が分かりません(><)

    全部じゃなく分かるところだけでも助かりますので、教えてください!お願いします! 問1、フックの法則においては、原点からxの位置にある質量mの物体は-kx(k(>0)はばね定数)の力を受ける。t=0において、x=aにある物体を静かに離した。このとき、 (1)運動方程式と初期条件(t=0のときの位置xと速度V)を示せ。 (2)この運動方程式を解いて、物体の位置xの時間t依存性を求めよ。 問2、フックの法則に従うばねの一端を天井に固定し、他端に質量mのおもりをとりつけた系を考える。ばねの長さが自然長になるようにばねを支えた状態から、おもりを静かに放した(位置の原点をばねの自然長でのおもりの位置とせよ)。このとき、 (1)運動方程式と初期条件(t=0のときの位置xと速度V)を示せ。 (2)この運動方程式を解いて、物体の位置xの時間t依存性を求めよ。 問3、全問(2)の質量mのおもりをとりつけたばねを、ゆっくりと伸ばして平衡の位置(すなわち、おもりへの地球の重力とフックの法則による力がつり合った位置)までもってきた。ばねの自然長の位置を原点として、この平衡の位置x1を求めよ。

  • 単振動の加速度

    物理の単振動の問題を解いていて,疑問に思った点があるので教えてください. ばねを鉛直につるし,そのばねに重りをつけて単振動させる問題のなかで,おもりの加速度を求める問題があるのですが, a = rω^2 を用いて加速度を求める場合,rは単振動の中心からの距離を用いるのでしょうか?それともばねの自然長からの長さを用いればよいのでしょうか? この手の問題ではつり合いの位置を基準にするので,単振動の中心からの距離を用いるのだと思うのですが,ある解答を見ると自然長からの距離になっていたので(^^ゞ

  • 高校物理の質問(はねかえり、単振動)

    高校物理の基本的なところで疑問に感じるところがあるので、アドバイスお願いします。 1、「静止している質量MのQに質量mのPが速度voで衝突した。その後のP,Qの速度を右向きを正にしてvp,vqとするとき、Pがはねかえる条件を求めよ。反発係数はeとする。」という問題の解答が、vp<0⇔m<eMとなっているのですが、自分は、vq-vp>0となればいいんじゃないかなと思うのですが、どこがおかしいのでしょうか?? 2、ばねにおもりをつけて、おもりを自然長の位置で離すと、自然長が端になって、つりあいの位置が振動中心になるというのが良く理解できません。 おねがいします。

  • 振動・波動の問題を教えてください!!緊急です。。。

    物理の振動・波動の問題です。 全く分からなくて、緊急事態です・・・ よろしくお願いします。 質量mを持つ2つの質点1,2が、自然長l、ばね定数kの3つのバネで接続され、x=0とx=Lで動かない壁に固定されている。水平右方向にとったx軸にそった1次元運動を考え、重力は考えない。(ただし、ω0≡√k/m) 図は、壁ーバネー質点1ーバネー質点2ーバネー壁 といった様子です。 (1)質点1,2の位置をそれぞれX1、X2としたとき、質点1,2の運動方程式を答えよ。 (2)質点が静止している場合の位置(釣り合いの位置)X1s、X2sを答えよ。 (3)質点1,2の位置を釣り合いの位置から測ったものをそれぞれ、x1=X1-X1s、x2=X2-X2sとする。x1、x2を使って質点1,質点2の運動方程式を表せ。 (4)運動方程式を解き、2つのモードの振動数ω1、ω2(ω2>ω1>0)をω0を用いて表せ。 (5)各々の振動数に対応する質点1,2の振幅の比を求めよ。 (6)各モードの振動の概略を図示せよ。 (7)モード1(振動数ω1)だけを起こすような初期条件の例を求めよ。 (8)t=0での初期条件が、位置がx1=a、x2=0、初速度がv1=0、v2=0で与えられるとき、位置x1(t)、x2(t)を求めよ。 (9)この運動の様子を簡潔に説明せよ。なお、必要なら、cosA+cosB=2cos{(A+B)/2}cos{(A-B)/2}、cosA-cosB=-2sin{(A+B)/2}sin{(A-B)/2}を用いても良い。

  • 高校物理のばねの問題です。

    あるばね定数 k のばねの一端が天井に固定されていて、他端に質量mのおもりが付けられている。ばねが自然長になるようにおもりを手で支え、(1)急に手を離すと、おもりは振動を始めた、(2)手でおもりを支えながらゆっくり手を下ろしていくと、ばねは伸びて、ある高さでおもりは静止した。 (1)(1)と(2)でなぜこのような違いが生じるのか、仕事とエネルギーの考え方から説明してください。 (2)(1)の振動の最下点でのばねの伸びは、(2)でのばねの伸びの何倍でしょう。 できるだけ早く回答をお願いします。

  • 鉛直につるしたばねの問題

    質量が無視できるばね(バネ定数k) を上端に固定し下端に質量mの小球をぶら下げる するとばねはのびて小球は静止。 次にばねが自然長になるように鉛直上向きに引き上げt=0で静かに放す。 下向き正としてz軸をとるとする。ばねの自然長の位置をz=0とする 時刻tにおける小球の速さをv(t)、位置をz(t)とする。 また重力加速度をgとする。 (1)小球の初期条件を記せ(t=0における小球の位置と速さ) これは静かに放したというところから v(0)=0 z(0)=0 (2)小球の運動に関する運動方程式を記せ md^2z/dt^2 = mg-kz (3)v(t) z(t)を初期条件を用いて表せ z・・=g - (k/m)・zより z・・=-(k/m)(z - mg/k) より解がAsin(wt-φ) から 初期条件より w=√[k/m]から z(t) = Asin√[k/m]t v(t) = A√[k/m]cos√[k/m] (4)時刻t における小球の重力による位置エネルギーを求めよ (5)時刻tにおける小球の運動エネルギーを求めよ K = 1/2 m ・(A√[k/m]cos√[k/m])^2 = 1/2 m A^2(k/m)cos^2√[k/m] (6)tにおけるばねの弾性力による位置エネルギーをもとめよ と自力でやってみたところとお手上げのところがありました。 そもそも全て自信がありません。 ご教授お願い申し上げます。

  • 大学の物理の問題 振動

    大学物理の問題です。 「質量m質点が、ばね定数mω’^2のばねにるながれている。t=0でばねは自然長の位置で静止していたものとする。t=0にFcos(ωt)の外力を加えた。ただしωとω’はわずかに異なるものとする。ことのき、xのt依存性を求めよ。」 この問題の解答解説をよろしくおねがいします。 できれば、ωとω’が等しい場合とどのように違うのかも示していただければ幸いです。

  • 衝突後のグラフ

    |~~~~~~AB~~~~~~|(ばねはいずれも自然長) ばね定数k、自然長2のばね、を図のように配置 ちょうど物体Aと物体Bは接触している。 右向きにx軸を固定して、ABの接触点を0とする t=0のとき物体AをX=-1から初速0で、物体Bは右向きに初速ωを加える。 すると Xa=-cosωt、Xb=sinωt(ω=√(k/m)) で表されますよね? AとBがはじめて衝突するときt1とすると t1=3π/4ω そのときのA、Bの速度は Va1=ω/√2、Vb1=-ω/√2 そのアト A、B完全弾性衝突したらどうなるか教えてほしいです。 完全弾性衝突したときはXa=sinωt、Xb=-cosωtとなるのでしょうか? よろしくお願いします。