- ベストアンサー
- すぐに回答を!
平面図形の辺の比の問題(数学A)
△ABCにおいて、辺ABを2:3に内分する点をD、辺ACを3:1に内分する点をEとする。 そして点D,Eから辺BCと平行な直線を引き、それと辺AC、ABとの交点をF,Gとする。 (ア)DG:ABを求めよ。 (イ)DF:GEを求めよ。 解き方を教えてください。 ちなみに夏休みの宿題です。
- mainjhs64th
- お礼率100% (3/3)
- 数学・算数
- 回答数3
- ありがとう数3
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.3
- yyssaa
- ベストアンサー率50% (747/1465)
△ABC△AGE△ADFはお互いに相似なので、 対応する辺の長さの比は等しくなります。 AG/AB=AE/AC=3/4 AG=(3/4)AB DG=AG-AD=(3/4)AB-(2/5)AB DG/AB=(3/4)-(2/5)=7/20 DG:AB=7:20 DF/GE=AD/AG={(2/5)AB}/{(3/4)AB}=8/15 DF:GE=8:15
その他の回答 (2)
- 回答No.2
- gohtraw
- ベストアンサー率54% (1630/2966)
特定の三角形を想定したのでは、一般性を失っていないことを証明する必要が生じます。 三角形の相似(△ABCとADF、AGE)を用いれば AG=3AB/4 AD=2AB/5 なので、DG=7AB/20 EG=3BC/4 FD=2BC/5 なのでEG/FD=15/8 となります。
質問者からのお礼
分かりやすい回答ありがとうございました!
関連するQ&A
- 高校数学の問題です。
AB=15、BC=24である△ABCの辺AB上にAD=2となる点Dを、辺BCの延長上にCE=ADとなる点Eをとる。 △ABCの面積をSとおく。 DEとACの交点をFとすると AF/FC=□とな り、 △ADFの面積=□Sである。 また、点Dを通り辺BCに平行な直線とACの交点をGとおくと、 DG=□であり、 DF/EF=□となる。 したがって、△CEFの面積=□Sである。 □の部分をお願いします。
- 締切済み
- 数学・算数
- 平面ベクトルと図形
平面上に△ABCがあり、AB=5.BC=aとする。∠Bの二等分線が辺ACと交わる点をD.辺BCを5:2に内分する点をE.BDとAEの交点をF.CFの延長とABの交点をGとする。(1)ベクトルAE=〔ア〕ベクトルAB+〔イ〕ベクトルACである。(2)AD:DC=〔ウ〕:〔エ〕であるから、ベクトルAD=〔オ〕ベクトルACである。(3)ベクトルDE=〔カ〕ベクトルAB+ベクトルACであるから、DE平行ABとなるのはa=〔ク〕のときである。(4)ベクトルAF=〔ケ〕ベクトルAB+〔コ〕ベクトルACである。(5)ベクトルCF=〔サ〕ベクトルCGである。(6)△ABC=2△ABFとなるのは、a=〔シ〕のときである。…という問題です。長々とすいません。本当に分からなくて困ってます。〔ア〕~〔シ〕までの回答をできれば解説つきでよろしくお願いします。
- ベストアンサー
- 数学・算数
- 平面ベクトルと図形
平面上に△ABCがあり、AB=5.BC=aとする。∠Bの二等分線が辺ACと交わる点をD.辺BCを5:2に内分する点をE.BDとAEの交点をF.CFの延長とABの交点をGとする。(1)ベクトルAE=2/7AB+5/7ACである。(2)AD:DC=5:aであるから、ベクトルAD=5/5+aである。(3)ベクトルDE=2/7AB+5(a―2)/7(5+a)ACであるからまでは分かるんですがその続きのDE平行ABとなるのはa=4になるのがよく分かりません。一度教えていただいたんですが…教科書のヒントにはDE平行ABとなるための条件は、ベクトルDE=kベクトルABを満たす実数kが存在すること。とあるんですが、このヒントを使っての解き方が分かりません。お願いします。教えて下さい。
- 締切済み
- 数学・算数
- 数学Aについての平面図形の問題です。至急よろしくお願いします。
問.AB=16、BC=14、AC=12である三角形ABCにおいて、 角Aの二等分線と辺BCとの交点をDとする。DCの長さを求めよ。 この問題について説明しなければならないので、二つ質問させていただきます。 (1)まず、BD:DC=AB:ACがわかります。 何故このようになるのかは、定理の「ADが角Aの二等分線で、点Dが辺BCをAB:ACに内分するから」という説明で正しいですか? (2)DCの長さは、比から DC=3/7BC =3/7×14 =6 ですが、何故3/7BCで求まるのですか? 説明は「BD:DCが4:3だから」ではダメですか? どうか今日中によろしくお願いいたします。
- ベストアンサー
- 数学・算数
- チェバの定理の応用の仕方がわかりません…
△ABCの辺ABを3:2に内分する点をD、辺ACを4:3に内分する点をEとし、 BEとCDの交点をOとする。AOとBC、DEの交点をそれぞれF、Gとするとき、比 (1)BF:FC (2)DG:GE をもとめよ。 という問題。 (1)はそのままチェバの定理の公式に当てはめていくことはできるのですが、(2)を解くことができませんん… 参考書の解答では △ADEにおいて、チェバの定理により、 (DG/GE)(EC/CA)(AB/BD)=1 …とすすめられていくのですが >(DG/GE)(EC/CA)(AB/BD)=1 はどうして?と感じてしまします。 よくわかりません。 どなたか教えていただけませんでしょうか。 よろしくお願いいたします。
- ベストアンサー
- 数学・算数
- 数A 平面図形の三角形の問題です。
どうしてもわかりません(^▽^;) 三角形ABCの内部の点Pを通り、辺BCに平行な直線がAB、ACと交わる点をそれぞれD、Eとする。 点Pが三角形ABCの重心で、AD=4のとき、線分DBの長さを求めよ。 という問題です。 解答ではDEとBCが平行でAP:PFが2:1だからDB=2 と出していますが、 自分はメネラウスの定理を使って解きました。 まず、APを延長した線とBCとの交点をFとし、 BPを延長した線とACとの交点をGとする。 BD/DA・AF/FP・PG/GB =BD/4・3/1・1/3 =BD/4=1 BD=4 と解きましたが、答え違いますよね汗 どこが間違っているのか教えて下さい!!
- ベストアンサー
- 数学・算数
- 図形と計量・平面図形[数学I]
2009年センター試験追試改正の問題です。 わからないので解説して頂きたいです。 よろしくお願い致します。 △ABCにおいて、AB=AC=6、cos∠BAC=2/3とする。辺ABを1:2に内分する点をDとする。 (1)CからABに垂線をひき、垂線との交点をHとする。このとき、AH=ア、CH=イ√ウであり、BC=エ√オ、CD=カ√キである。また、cos∠BCD=ク/ケである。 (2)Bにおいて直線ABに接し、Cにおいて直線ACに接する円の中心をOとする。CDと円との交点のうちCと異なる方をEとする。△BDEと相似な三角形は、コとサである。 したがって、BE=シである。よって、AE=ス√セであり、△ABEの面積はソ√タである。 AEの延長と円Oとの交点のうちEと異なる方をFとするとき、AF=(チツ√テ)/トである。
- ベストアンサー
- 数学・算数
質問者からのお礼
分かりやすい回答ありがとうございます! ベストアンサーに選ばせて頂きました!