• ベストアンサー
  • すぐに回答を!

数学「微分法」の問題が分りません。教えてください。

(1)kは定数とします。3次関数f(x)=-x^3+kx^2-3kx-2があります。(途中式もお願いします。) (1)f(x)が極値をもつようなkの値の範囲を求めてください。 (2)f(x)が単調に減少する関数となるようなkの値の範囲を求めてください。 (2)関数f(x)=x^3+ax^2+xが0<x<1の範囲で極大値と極小値をもつように、定数aの値の範囲を定めてください。(途中式もお願いします。) ちなみに答えは、 (1)(1)k<0、9>k (2)0≦k≦9 (2)-2<a<-√3 です。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数238
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • ferien
  • ベストアンサー率64% (697/1085)

>(1)kは定数とします。3次関数f(x)=-x^3+kx^2-3kx-2があります。 f'(x)=-3x^2+2kx-3k=0 ……(*) >(1)f(x)が極値をもつようなkの値の範囲を求めてください。 2次方程式(*)f'(x)=0が異なる2解を持てば、その2解が、 グラフでは極値をとる点になるから、判別式D/4>0であればよい。 D/4=k^2-(-3)×(-3k)=k^2-9k=k(k-9)>0より、 よって、k<0,9<k >(2)f(x)が単調に減少する関数となるようなkの値の範囲を求めてください。 f(x)が単調に減少するには、f'(x)≦0であればよいから、 (*)について、判別式D/4≦0であればよいから、k(k-9)≦0 よって、0≦k≦9 >(2)関数f(x)=x^3+ax^2+xが0<x<1の範囲で極大値と極小値をもつように、 >定数aの値の範囲を定めてください。 f'(x)=0とおいて、2次方程式の解の問題として考えていきます。 f'(x)=3x^2+2ax+1 =3{x^2+(2a/3)x+(a^2/9)}-(a^2/3)+1 =3{x+(a/3)}^2-(a^2/3)+1 より、 軸は、x=-a/3 0<x<1の範囲で極大値と極小値をもつから、 f'(x)=0で極値を取る点が2つあれば良いから、異なる2解を持てばよい。、 判別式D/4=a^2-3×1=a^2-3>0より、 a<-√3,√3<a ……(1) 0<軸<1であればよいから、0<-a/3<1より、 -3<a<0 ……(2) 異なる2解が、0<x<1の範囲にあれば良いから、グラフで考えると、 f'(0)>0,f'(1)>0であればよい。 f'(0)=1>0 …条件をみたしている。 f'(1)=3+2a+1>0より、a>-2 ……(3) よって、(1)(2)(3)の共通部分は、 -2<a<-√3 f'(x)=0の解、グラフはy=f'(x)とおいて、放物線として考えて下さい。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学「微分法」の問題が分りません。教えてください。

    (1)aは0以上の定数です。このとき、関数y=x^2(x-a)の極値を求めてください。(途中式もお願いします。) (2)関数f(x)=ax^3-3ax^2+b (1≦x≦3)の最大値が8、最小値が-4であるとき、定数a、bの値を求めてください。ただし、a<0とします。 (途中式もお願いします。) ちなみに答えは、 (1)a=0のとき極値を持たない、a>0のとき極大値0(x=0) 極小値-4a^3/27(x=2a/3) (2)a=-3、b=-4

  • 微分法の問題について

    関数f(x)=x^3+ax^2-9x+bがx=-1で極大値8をとるように、定数a,bの値を定めよ。また、極小値を求めよ。という問題が分かりません。教えてくださいおねがいします。

  • 3次関数が極値をもつ必要十分条件

    3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値-6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値-6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=-6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…

  • 極値の条件から関数決定

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり,x=2で極小値-6をとるとき,定数a,b,c,dの値を求めよ。 教えてほしいところ この問題でa,b,c,dの値が求まった後、その値で本当に極値をとるのか見当する必要があるらしいんですが理解できません。 f`(α)=0→f(x)がx=αで極値をとる これがなり立たないのは理解できます。なぜなら,f`(x)=0でD=0の可能性があるからです。 しかし、今回の問題ではf`(x)=0の解は2つあるという条件を組み込んでいるので、D=0の可能性は消えます。 つまり、f`(x)=0の解がα,βで(α>β)→f(x)がx=αで極値をとるということは成り立つはずです。 さらに、どちらが極大で極小をとるという保証もf(0)=-6,f(2)=0で十分なはずです。 よって逆の確認は必要ないのでは??? ご意見ください。

  • 3次関数の微分の問題

    こんにちは。 数研出版「ベーシックスタイル三訂版」の163、164の問題です。 解説が無いので分からず困っています。 [163] 3次関数f(x)=x^3-ax^2が、0<x<1で極値をもたないための実数aに関する条件を求めよ。 [答え] a≦0、3/2≦a [164] 関数f(x)=1/3x^3-a^2x-1(a>0)の極大値と極小値との差が9/16となるaの値を求めよ。 [答え] a=5/3 以上です。 どちらか一方だけでもかまいませんので、分かるかたよろしくお願いします。

  • 数学の微分についてです。

    閲覧ありがとうございます。 問題で『aを定数とする。関数f(x)=2X^2-3(a+2)X^2+12aXが極値をもつとき』 (1)aが満たすべき条件を求めよ。 (2)f(x)の極大値が32となるとき、aの値を求めよ。 なんですが、自分の答としては…極値があるなのでD/4>0を使い、a<0、2<aしたのですが、解答はa≠2になっていました。 自分の解答『a<0、2<a』でもよろしいですか? あと(2)なんかの場合は、(1)で出したaの値の範囲をそれぞれ別で求めればいいだけですか?

  • 微分の問題

    3次関数f(x)=x^3-ax^2+ax-3aがあり、g(x)=f(x)-xf´(x)とする。ただしaを定数とする。 (1)g(x)を求めよ。 g(x)=-2x^3+ax^2-3a (2)a>0とする。g(x)の極大値、極小値をaを用いて表せ。 極大値(5/27)a^2-3a 極小値-3a (3)a≠0とする。方程式g(x)=0が異なる2つの実数解をもつとき、定数aの値とその時の実数解を求めよ。 (1)(2)はあってますか? また、この問題の(3)を教えてください。

  • 数学

    この例題の答えがわかりませんお願いします。 (1)関数の極大値と極小値を求めよy=f(x)=x3乗+6x2乗 +9 (2)関数の極値を求めよ y=f(x)=(x-2)4乗+1 困ってます。。 お願いします。

  • 数学;方程式への応用

    (1)3次方程式x^3-kx+k=0が異なる3つの実数解をもつような、実数kの値の範囲を求めよ。 答えでは、微分して極大値、極小値をもつ時のxの値を求めて、f(√k/3)・f(-√k/3)<0で求めてるんですが、これ以外の回答を詳しくお願いします。 (2)3次方程式x^3-5ax^2+3ax^2+a=0が正の実数解を持つための定数aの範囲を求めよ 詳しくお願いします。

  • 至急 問題解説お願いします

    こんばんは。 タイトル通りですが、以下の問題の解説をお願いします。途中式なども省かず示していただけるとありがたいです。 (1)3次関数 y=2x^3–3x^2+3ax(aは実数の定数)がx=α、x=βでそれぞれ極大値、極小値をとるとき、次の問に答えよ。  (ア)αの値の範囲を求めよ。  (イ)α+β、αβの値を求めよ。  (ウ)f(x)の極大値と極小値の値の和が0であるとき、aの値を求めよ。 (2)関数f(x)=2x^3+9x^2+6x–1はx=(   )で極小値(   )をとる。 ちなみに回答は、 (1)  (ア)a<1/2  (イ)α+β=1、αβ=a/2  (ウ)a=1/3 (2)順に、[–3+√5]/2、[7–5√5]/2 です。よろしくお願いします!

専門家に質問してみよう