• ベストアンサー
  • 困ってます

代数学 群の問題

Gをアーベル群、eをGの単位元、kを整数とする。 (1)H={g^k|g∈G}はGの部分群であること (2)N={g∈G|g^k=e}はGの正規部分群であること (3)剰余群G/NはHと同型であること 上記3つを示したいのですが、お力を貸してください。どうぞよろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

1) 部分群であると示すには、 簡単に言えば、まずその集合の元のオペレーションがその集合の中に閉じていなければなりません。 それと、単位元と逆元がその集合の中に存在している、この三つを示せばいいのです。 つまり a,b∈H, a*b∈H a,a^-1 ∈H, e∈H ですね。 2)正規部分群であると言うのは、剰余類 gH=Hg ∀g∈G ということです。 ただ、アーベル群を前提としての話ですので、普通にNが部分群であればそれは正規部分群としていいと思います。 3) これは一目瞭然です。 写像f:G->G/N でNはker(f)です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どうもありがとうございました。解決しました。

質問者からの補足

(3)なのですが、 f が群の準同型であるとの示し方を教えてください。 そのとき Ker(f) と Im(f) は何になりますか?

その他の回答 (1)

  • 回答No.1

なにがわからないの? (1)(2)は教科書なり講義ノートなりに書いてある 定義を素直に適用すれば解決 (3)については「自然な写像」を考えればいいんでないの? すなわち [g] ∈ G/N に対して g^k ∈ H を対応させる これがwell-definedであり 群の順同型であり さらに,逆写像が存在しそれが群の順同型になることを示せばいい 質問を連発する前に 自分で考えること

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すみません本当に何も分かっていなくて、どうもありがとうございました。

関連するQ&A

  • 代数学の、正規部分群の問題を教えて下さい。

    Gを群、HをGの部分群、NをGの正規部分群とする。 (1)NはHN:={hn|h∈H,n∈N}の正規部分群になっている事を示しめしなさい。 (2)剰余群HN/NとH/(H∩N)は同型である事を示しなさい。 という問題です。 お願いいたします。

  • 代数学の問題です。

    わからないので教えてください 。N≥4を偶数として、H=D_n∈S_ nおよびN=A_nとします。これを 第2同型定理を用いて、HN=S_n を示してください。 第2同型定理 HおよびNをGの部分群とし、N を正規部分群とすると、 H∩NはHの正規部分群となる。 同型写像 H/(H∩N)≅NH/N が存在する。 わからないので教えてくたさい!よろしくお願いします。

  • 群論「可解群」について

    Gを群とする. 「Gの正規部分群Nに対し,NとG/Nがともに可解群ならば,Gもまた可解群である.」 この証明なのですが,途中がわかりません. (∵) G/Nは可解群だから,G/Nの正規列 G/N=G_0/N⊃G_1/N⊃…⊃G_m/N=N/N であって,同型定理より,商群 (G_(i-1)/N)/(G_i/N)≒G_(i-1)/Gi (≒は同型の記号としてください) がアーベル群となるものが存在する. このとき「G_iはG_(i-1)の正規部分群」であることに注意する.…(?) また,Nが可解群だから,Nの正規列 N=G_m⊃G_(m+1)⊃…⊃G_r={e} であって,商群 G_(j-1)/G_j がアーベル群となるものが存在する.このとき, G=G_0⊃G_1⊃…⊃G_m=N⊃G_(m+1)⊃…⊃G_r={e} はGの正規列であって,その商群はアーベル群よりなる. よってGは可解群である. Q.E.D とあったのですが,途中の(?)の部分がわかりません. なぜ「G_iはG_(i-1)の正規部分群」となるのでしょうか? 詳しい方お願いします.

  • 可解群の補題の証明

    NをGの正規部分群とするときGが可解であるためには、NおよびG/Nが ともに可解であることが必要十分である。 ということの証明で分からない部分があります。 どなたかご教授願います。 証明 必要性: G=G_0⊃G_1⊃・・・⊃G_r={1}、G_i/G_(i-1):アーベル という部分群列をとる。 φ:G→G/N を自然な全射とφ(G_i)=H_i とおけば (G/N)=H_0⊃H_1⊃・・・⊃H_r={1} となる。 また、各iについてφは自然に φ_iなる全射準同型を引き起こす。 したがってH_(i-1)/H_i:アーベル群となる。 Nの可解性はG:可解群⇒Gの任意の部分群は可解ということで証明が 略されています。 「この証明のまた、各iについて~アベール群となる。までの部分が 良く分かりません。」 もう一つ十分性の証明でも分からないところがあります。 十分性: N、G/Nは可解 N=N_0⊃N_1⊃・・・⊃N_s={1} N_(i-1)/N_i:アーベル (G/N)=H_0⊃H_1⊃・・・⊃H_t={1} H_(i-1)/H_i:アーベル なるものがとれる。 こととき、自然な全射φ:G→G/NによるH_iの逆像をG_iとおけば G=G_0⊃G_1⊃・・・⊃G_t=N さらに、φは自然に同型、G_(i-1)/G_i=H_(i-1)/H_iを引き起こすから 上記Nの部分群列と併せて、Gの可解性が導かれる。 「この証明は最後から2行目のさらに~の自然に同型を引き起こす というところがわかりません。」 「」の2箇所をどなたか解説していただけたら幸いです。 よろしくお願いします。

  • 代数の問題です。

    大学の代数でこのような問題がでて きて、わからないので教えてくださ い 。よろしくお願いします。加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 代数の問題です。

    加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • Sylowの定理と位数14の群

    G:位数14の群 N:Gの7-Sylow部分群 H:Gの2-Sylow部分群 とし,写像f:H→Aut(N)を f(h)=(n↦hnh^-1) で定める. このとき, (1)Imf={e}⇒Gは巡回群 (2)fが単射⇒Gは二面体群と同型 であることを示せという問題なのですが,以下のように示しました. (∵) Sylowの定理より,Gの7-Sylow部分群の個数は1なので,NはGの正規部分群である.またN,Hの位数はそれぞれ7,2なのでともに巡回群となる.よってN,Hの生成元をそれぞれa,bとすると,a^7=e,b^2=e.一方,N∩Hの位数は2と7の公約数であることから1.ゆえにN∩H={e}.したがって G=NH={a^i b^j | a^7=e,b^2=e} (Gの任意の元はN,Hの元で一意に表せる) また,NはGの正規部分群であることから,ある整数mが存在して,bab^(-1)=a^mとなる.ここで, (a^m)^m=(bab^(-1))^m=b(a^m)b^(-1)=(b^2)a(b^(-2))=a すなわち,a^(m^2-1)=eとなるので,m^2-1は7で割り切れる.ゆえにある整数lが存在して, m^2-1=(m+1)(m-1)=7l と書けるので,m=7l±1. (1) m=7l+1のとき bab^(-1)=a^m=a^(7l+1)=a ∴ab=ba よってGはN,Hで直積分解でき, G≒N×H≒Z/14Z (≒は同型の意) ゆえにGは巡回群. (2) m=7l-1のとき bab^(-1)=a^m=a^(7l-1)=a^(-1) よってGは二面体群と同型. (証明終) こんな感じで(1),(2)を一気に示したのですが,(1),(2)の仮定を一切使っておりません.(1)については別個に仮定を使って示せましたが,(2)はどこで仮定を使ってよいかわかりませんでした. ご教示願います.

  • 代数学 群の剰余群 指数について

    群の剰余群や指数について今勉強していて、持っている参考書にあまり載っていないので、ネットでいろいろ調べていたんですが、 「Gが群でHがその部分群の時、指数[G:H]が2ならHは正規部分群になる」のが当たり前のように書いてあるのですが、これがわかりません。 正規部分群はxH=Hxが成立することから導くのでしょうか? 説明がつたなくてすいません。教えてください。よろしくおねがいします。

  • ガロア理論:体の拡大で起こっていること

    ガロア理論の考えでは,基礎体K上の既約多項式の根をすべて添加したガロア体Σをつくる.そのガロア体を基にΣ/Kの自己同型群Gを今度は考える.その自己同型群の中に正規部分群N1を探し,その正規部分群で群Gの剰余群G/N1=G1を作る.また,G1の中に正規部分群を探し,N2とする.G1/N1の剰余群を作り,このやり方を繰り返し,群Gを小さくし,最終的には,単位元のみの群Eまで小さくすると理解しています. さて,正規部分群を使って,小さくしていく場合,対応する体側ではどのような拡大が起こっているのでしょうか.可解であるためには,剰余群の次数が素数であることが求められますが,対応する体の拡大はその素数乗根の共役根による拡大になっているといっていいのでしょうか.

  • 代数学の、群の問題を教えて下さい。

    nは正の整数とする。Gは位数nの巡回群とする。この問題では、GはZ/nZに同型であることを示す。 (1)Gの生成元xをとり(つまりG=<x>)、群の準同型定理f:Z→Gをm∈Zに対してf(m)=x^mで定める。このときfは全射であることを示しなさい。またKerf=nZであることを示しなさい。 (2)fに準同型定理を適用して、Z/nZ≃Gを示しなさい。 という問題です。お願いします。