• ベストアンサー
  • すぐに回答を!

フーリエ変換

フーリエ変換でよくある形の式 X(f)=∫x(t)e(-j2πft)dt x(t)=1(-d/2<t<d/2),0(それ以外) というものなのですがこの式は ∫x(t)cos2πft dt とかけますよね?この積分は sin2πft/2πftになるかと思っていたのですが そのまま計算すると答えが合わないんです。簡単なところを見逃している気がしますが ∫x(t)cos2πft dt の計算を省略せず解答お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数609
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

sin(dπf)/πfです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

fの入力忘れてました、ありがとうございます。

その他の回答 (2)

  • 回答No.2
  • uyama33
  • ベストアンサー率30% (137/450)

X(f)=∫x(t)e(-j2πft)dt x(t)=1(-d/2<t<d/2),0(それ以外) x(t) が0で無い範囲での積分になる。 ∫cos2πft dt (-d/2<t<d/2) の範囲で定積分する。 範囲にdがあるので、答えにはdが出てくる。 答えにはtは出てこない。そうしないと時間領域から周波数領域への変換にならない。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お恥ずかしいです。 答えはsinDπ/πf でしょうか

  • 回答No.1

分母のtが余分です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お恥ずかしいです。 答えはsinDπ/πf でしょうか

関連するQ&A

  • フーリエ変換

    さっそく質問なんですが。 f(x)=0 (-∞<x<-1 ) 1 (-1<=x<0 ) -1 ( 0<=x<1 ) 0 ( 1<=x<∞ ) この関数のフーリエ変換を求める問題なんですが。 僕は フーリエ変換 = 1/(√2π)∫[-1~0]e^(-jux)dx-1/(√2π)∫[0~1]e^(-jux)dx ※[ ]は積分範囲 とやって解いたんですが。 答えが (1/j)*√(2/π)*{(cos(u)-1}/u になってしまいました。 解答を見ると √(2/π)*{(cos(u)-1}/u となっていて(1/j)が余分な結果なりました。 どうして合わないのか教えてください。 非常にわかりにくい式ですいません。

  • フーリエ変換について

    フーリエ変換について 次の信号(三角波)をフーリエ変換したいのですが、 f(t)=-t+2,0≦t≦2      t+2,-2≦t<0 解答では、 F(ω)=2∫(0⇢2)(-t+2)cosωtdtを計算することとなっていました。 フーリエ変換の定義式では F(ω)=2∫(0⇢2)(-t+2)e^(-jωt)dtとなっているため、何故上記の式となったのかが分かりません。 途中式を書いていただけると幸いです。

  • フーリエ変換

    フーリエ変換がX(f)=∫[-∞→∞] x(t)exp(-j2πft) dt と与えられるとき x(t) = 1, |t| <= 1/2 0, |t| > 1/2 のフーリエ変換はどうなりますか?

  • exp(-π(t^2))のフーリエ変換の積分計算で

    f(t)=exp(-π(t^2))のフーリエ変換の積分計算でつまずいています。 ∫(-∞->∞)f(t)*exp(-iωt)dt で、exp(-iωt)をオイラーの公式でcosとsinの式に直し、偶関数、奇関数の性質からsinの項が消え、 2∫(0->∞)exp(-π(t^2))*cos(ωt)dtとなりました。 しかし、eの指数部分のt^2が厄介で積分ができません。 積分方法、または別解がありましたらご教授いただけると幸いです。

  • フーリエ変換で質問です

    関数f(t)のフーリエ変換を F(u)=∫[∞~-∞]f(t)×e^(-iut)dt とする。 次の関数のフーリエ変換を求めよ f(t)={ -|t|+1 (|t|≦2)       0   (|t|>2) という問題なんですが、 []:積分区間 u=ω として F(t)=1/(√2π)∫[2~0](-t+2)(e^(-jut)dt)+1/(√2π)∫[0~-2](t+2)(e^(-jut)dt) と計算して、答えが (e^-2iu+e^2iu)/iu となったのですが、とき方はあってますか?

  • フーリエ変換(積分)の問題です

    こんにちは。 フーリエ変換による積分の問題が分からず困っています。 変数tについての関数とそのフーリエ変換が以下の関係式で成り立っているとする。 F(ω)=∫[-∞ ∞] f(t)e^(-jωt) dt f(t)=1/2π ∫[-∞ ∞] F(ω)e^(jωt) dω このとき、次の関数g(t)のフーリエ変換G(ω)を、F(ω)を用いて表せ。 (1)g(t)=f(t)cos(ω_0*t) (2)g(t)=df(t)/dt 教えていただけると助かります。 よろしくお願いします。

  • exp(-t/T)cos(ωt)のフーリエ変換について教えてください。

    フーリエ変換について質問です。 exp(-t/T)cos(ωt)のフーリエ変換に行き詰っています。積分区間は-∞→∞で ∫exp(-t/T)cos(ωt)exp(-iωt)dt (T,ωは定数)としてexp(-iωt)=cos(ωt)-isin(ωt)を利用して ∫exp(-t/T){cos(ωt)}^2dt-i∫exp(-t/T)cos(ωt)sin(ωt)dt =1/2[∫exp(-t/T){cos(2ωt)+1}dt-i∫exp(-t/T)sin(2ωt)dt] と変形し、それぞれの項について部分積分を試みたのですが、最終的に発散してしまい答えにたどり着きません。 また、答えは実数部が吸収型、虚数部が分散型のピークのグラフが描けるはずなので、どこかで超関数を用いなければならないと思うのですが、どこで使うのかも分かりません。 どなたか、よろしくお願い致します。

  • 楕円の弧の長さ

    楕円の弧の長さを求める計算がわかりません。 b>a>0のとき、x²/a²+y²/b²=1この楕円を x=acosθ,y=bsinθを使って表した時、θが0からαまで動くときの楕円の弧Lの長さを求める時に、dx²+dy²を利用し、b>a>0のと仮定したので、1-(a/b)²=k² とおくことができ、そうすると楕円の弧の長さから  ∫√1-k²sin²θdθ・・・(1)  (√ のなかは1-k²sin²θ)という積分が登場するそうです。 変数変換をsinθ=t として、cosθdθ=dt,第一象限にある弧長を求める限りでは、 cosθ>0したがって、√1-sin²θdθ=dt (√ のなかは1-sin²θ) ここからの計算がわからないのです。(1)はtに関する積分として ∫√(1-k²t²)/(1-t²)dt (√ のなかは(1-k²t²)/(1-t²))となるそうですが、(1+kt)(1-kt)/(1+t)(1-t)としてみたり、 置換積分の説明を見たりしても、わかりませんでした。tに関する積分への、計算を教えてください。お願いします。

  • ラプラス・フーリエ変換の問題について

    ラプラス・フーリエ変換の問題について 毎回で申し訳ありませんが、今回もいくつか分からない問題があったので解答の方をお願いします (1)関数g(x)を求めよ ∫[-∞,∞]∫[-∞,∞]g(x-y)g(y-z)g(z)dydz = [ 2πexp{-(x^2 / 6)} ] / √3 ・積分範囲から、おそらくフーリエ変換に関する問題だと思うのですが、全く解法が思いつきません。お手数ですが、解法手順を示しながらの解答をお願いします^^; (2)X(s),Y(s)を求め、それを使いx(t),y(t)を求めよ (dx(t) / dt) = sint - ∫[0,t]y(t - τ) x(t)dτ (dy(t) / dt) = t - 3*∫[0,t][(t - τ) * { dy(τ)/dτ }]dτ (※上の式は連立方程式です。初期条件は、x(0) = 0,y(0) = 1) ・こちらの1本目の式は、畳込みよりとラプラス変換より、 X(s) = {1 /(s^2 + 1) } - X(s)Y(S) になると思っています しかし、2本目の式の積分部分が全く分からず、その上ラプラス変換の連立方程式は教科書などでも見たことがないので、お手上げ状態です。こちらも解法手順を含めた解法をお願いします^^;

  • 左辺の式の変形の仕方がわからない

    sin⁴θ+cos⁴θ=1-2sin²θcos²θを証明する問題の解答に 「sin⁴θ+cos⁴θ=1-2sin²θcos²θにおいて 左辺の式を変形すると(sin²θ+cos²θ)²-2sin²θcos²θ = 1-2sin²θcos²θ となる」と書いてあるのですがどういう公式を使って計算すれば左辺がこういう結果になるのでしょうか?