• ベストアンサー
  • 困ってます

数列の一般項と極限

数学の問でよくわからない問題があります。 数列の一般項と極限値を求める問題なのですが回答に困ってしまったため皆さんの力を貸していただけると助かります。 Q. 次の数列の一般項と極限を求めよ    0.8, 0.88, 0.888, 0.8888, 0.88888, … このような問題です。 できれば解説もしていただけると助かります。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数292
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
noname#175206

 a1から始まる数列として、小数点以下に1個ずつ8が増えて行ってますね。すると以下のような数列でしょう。 (a0=0) a1=0+8×10^(-1)=0.8 a2=a1+8×10^(-2)=0.88 a3=a2+8×10^(-3)=0.888 a4=a3+8×10^(-4)=0.8888 …… an=a(n-1)+8×10^(-n)=0.8888…8 ←小数点以下にn個の8 なんでしょうね。  数列として解く方法はあるのでしょうけど、n→∞の極限では、要は循環小数0.8888…ですから、それをxと置いて、  10x=8.8888… - x=0.8888… ―――――――――  9x=8 ∴x=8/9

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ふむふむなるほど。 丁寧な回答ありがとうございました!参考にさせていただきます!

関連するQ&A

  • 数列の極限について

    数列の極限が理解できませんので、 以下の問題の解答、解説をお願いいたします。 数列の極限を調べ、収束する場合は極限値ももとめたいです。 (1)n^2/(5n+1) (2)√(n+1)-√n また以下の極限値の求め方がわかりません。 (1)(2x^2 +3)/(4x-1) (2)x/√(x^2 +4)-2 よろしくお願いします。

  • 数列の極限を求める問題です。

    数列の極限を求める問題です。 あまりに分からないのでどなたか助けていただけないでしょうか? ------------------------------------------------------------------------- 問 f(x) = log(1+x)    (x > 0)とする。 (1)t≧1/3のとき、1/(t+1) < f(1/t) < 1/(t+ (1/3)) が成り立つことを示せ (2) cはc≧1/3を満たす定数とするとき、数列 {a[n]}[n=1~∞] を a[1] = f(1/c) , a[n] = f(a[n-1])    (n≧2)    により定める極限値 lim[n→∞] {(log a[n])/log n} を求めよ ------------------------------------------------------------------------- (1)は解けたのですが(2)が分かりません。 ですので (1) が解けたとして (2) を求めていただけたらと思います。 よろしくお願い致します。

  • 数列の極限について

    以下のような問題で、悩んでおります。 どうか、ご教授お願いいたします。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 各自然数 n に対して、 a_n = (n ! / n^n) とおく。 このとき、次の各問に答えよ。 (1)0 < a_n ≦ 1/n (n=1,2,3,・・・)を示せ (2)数列{a_n}の極限値を求めよ ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー (1)は、n=1,2,3と順に計算してみて、明らかなことがわかったのですが、どのように記述すべきかで悩んでおります。 (2)は、lima_n の値は0と思うのですが、数列{a_n}となると、どのように計算をすればよいのか悩んでいます。 どうぞよろしくお願いします。

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

数学的に厳密に言うなら「一意には決まらない」としか.... 極限を求めるには一般項が必要なんだけど, 「一般項」ってようするに「この『…』がどうなっているか」ということなんだね. で, そんなもの分かるわけがない. もちろん問題製作者が十分素直な心で問題を作っているなら「こうだろう」と推測することはできるけど, それはあくまで「推測」であって「その通りである」ということをこの問題から確信することは不可能. 問題製作者が 5項目まではこの通り, 6項目以降は全部 1 という数列を考えていないなんて, どこにも保証されてないよね.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

うむむ、なかなか難しいです…、いろんな意味で 回答ありがとうございました。

関連するQ&A

  • 数学III 数列の極限

    次の式で定義される数列{A(n)}の一般校とその極限を求めよ。 (1)  A(1)=1, A(2)=1 , A(n+2)=A(n+1)+A(n)     (フィボナッチ数列) ↑書き方が悪いのですが、A( )のカッコ内は、項数(?)として読み取ってください。 (2)A(1)=10 , A(n+1)=2√(A(n)) (2)は、まったく数列の一般項にたどり着きません。 ルートだらけ!! どうすればよいのでしょうか。 なお、数列の一般項が求めることができたら、そのあとは、自力で極限は出せるので、数列の一般項の出し方だけでいいので教えてください。

  • 数列の極限でわからない問題

    次の数列の極限値をいえ。 cosπ,cos3πcos5π,.......,cos(2n-1)π,...... この問題がわかりません。 ぼくの予想では振動して極限値はないと思うのですが、この問題は教科書で「収束しない数列」の章より前に出ている問題なので、極限値がでると思います。 初歩的な問題ですがどうぞよろしくお願いします。

  • 数列の一般項の求め方

    ひさしぶりの数学なので感が鈍ってます…。 下記数列の一般項の求め方を教えてください。 a(1)=1 , a(n+1) =a(n)/{2a(n)+3} (n= 1,2,…)で定義される数列a(n)の一般項を求める。 ()内は添え字です。 とっかかりがわかりません…。 よろしくおねがいします。

  • 極限値

    第n項が次式で与えられる数列の極限値を求めよ。1/n^3{1・2+2・3+・・・+n(n+1)} いろいろ調べてみたのですがわからないので教えてください。

  • 数列の一般項を求める問題。

    次の問題の解き方が分からなくて困っています。 数列AnをA1=50, (n+1)An=(n-1)A(n-1)(n=2,3,4・・・)で定める。 このとき一般項Anを求めよ。 答えは100/n(n+1)です。 どなたか分かりやすい解説よろしくお願いします。

  • 数列の一般項についてです。

    問題:次のように定められた数列{An}の一般項を求めよ。 A1=3、An+1=&#65293;4An&#65293;5 (n=1,2,3,…) これが求められません>< 誰か優しい方解説のほうお願いします;;

  • 文字式を各項にとる数列の一般項

     初めまして、暇つぶしに数学の考えごとをしていると、分からないことがありましたので、質問させていただきます。数(?)列についてなのですが、知識は高校数学程度しかなく、しかも数列の分野はかなり忘れ気味です。高校数学に毛の生えた程度の内容ではとても説明できないという場合、高度な解説をしていただいても馬の耳に念仏ということになってしまいますので、その場合はあまり詳しく説明していただかなくても結構です。  {A(n)}=n^x  という文字の入った数列を考えます。この第1階、第2階、第3階……の階差数列を考えてゆきます。階差数列をダッシュをつけて表現しますと、具体的には、  {A'(n)}=A(n+1) - A(n)=(n+1)^x - n^x  {A''(n)}=(n+2)^x - 2(n+1)^x + n^x  {A'''(n)}=(n+3)^x - 3(n+2)^x + 3(n+1)^x - n^x  ……  ということになります。この一般の場合を考えたいのです。考え方として、{A(n)}、{A'(n)}、{A''(n)}、……の一般項を順番にならべた数列{B(m)}を考えて、その一般項を求めたいのだ、ということにもなります。  {B(1)}=n^x  {B(2)}=(n+1)^x - n^x  {B(3)}=(n+2)^x - 2(n+1)^x + n^x  ……  {B(m)}=???  ということです。まあ、式の形からいって、一般項はきっと  {B(m)}=Σ[k=1,m] {(-1)^(k+1)} * [m!/{k!(m-k)!}] * {(n+k-1)^x}  という形になるんだろうな、と想像はつきますが(m!/{k!(m-k)!} はパスカルの三角形の一般項)、どうしてそうなるのか分かりません。ご教示いただきたいです。 (あと、ついでの話になりますが、{B(m)}の第~階差数列を同様に考えて、同様に各一般項から数列{C(l)}とかも作れそうですね。その一般項を考えて……とやってると、終わりがなさそうです)  高校数学で簡単にできることをド忘れしてやしないか、不安でヒヤヒヤしますが……。

  • 数列 極限 大学入試

    x[1]=1,x[n+1]=1/(1+x[n]) (n=1,2,3,・・・・・)により数列{x[n]}を定める。 (1)すべての自然数nに対して1/2≦x[n]≦1が成り立つことを証明しなさい。 (2)すべての自然数nに対して│x[n+1]-x[n]│≦1/2*(4/9)^(n-1)が成り立つことを証明しなさい。 (3)極限値α=lim[n→∞]x[n]を求めなさい。(数列{x[n]}が収束することは証明しなくてよい。) (1)は数学的帰納法で証明できたんですが、(2)(3)がわかりません。どなたか解説をお願いします。

  • 数列の一般項の求めかたがわかりません(>_<)教えて下さい!

    数列の一般項の求めかたがわかりません(>_<)教えて下さい! 数列{an}の初項から第n項までの和がS=n?3のn乗で表されるときの一般項anを求めよ。 途中式もよろしくお願いしますm(__)m!

  • 漸化式から数列の一般項を求める問題で・・

    連続した質問で申し訳ありません。 a(1)=1,2a(n+1)=a(n)+2の漸化式によって帰納的に定められた数列の一般項を求めよという問題なのですが・・ n=1 2a(2)=a(1)+2 n=2 2a(3)=a(2)+2 n=3 2a(4)=a(3)+2 ・・・・・・・・ n-2 2a(n-1)=a(n-2)+2 n-1 2a(n)=a(n-1)+2 よって (a(2)+a(3)+a(4)+…a(n-1))+2a(n)=a(1)+2(n-1) 2a(n)=1+2(n-1)-(a(2)+a(3)+a(4)+…a(n-1)) a(n)=(1+2(n-1)-(a(2)+a(3)+a(4)+…a(n-1)))/2 となると思うのですが、 この先、どのようにしたら回答の「2-(1/2)^(n-1)」に行き着くのかが分かりません。 どなたかどうか解説お願いします。