• ベストアンサー

次のベクトル解析の問題を教えてください。

ベクトル解析の問題です。 (1)球面上で極座標がパラメーター0≦t≦πにより r=1 θ=sint ψ=t で与えられる曲線の長さを求めよ。 (2)二つのパラメーター0≦ρ≦1、0≦ψ≦2πで与えられる曲面: x=ρcosψ y=ρsinψ z=ρ^2 の面積を求めよ。 (1)、(2)ともに3つの式が出てきて、どの公式に当てはめればよいのか分かりません。 もしよろしければ解き方を教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

(2) x=ρcosψ y=ρsinψ z=ρ^2 ∂x/∂ρ=cosψ ∂y/∂ρ=sinψ ∂z/∂ρ=2ρ (∂x/∂ρ)^2+(∂y/∂ρ)^2+(∂z/∂ρ)^2=1+4ρ^2 ∂x/∂ψ=-ρsinψ ∂y/∂ψ=ρcosψ ∂z/∂ψ=0 (∂x/∂ψ)^2+(∂y/∂ψ)^2+(∂z/∂ψ)^2=ρ^2 面積は ∫_{0~2π}∫_{0~1}ρ√(1+4ρ^2)dρdψ =2π∫_{0~1}ρ√(1+4ρ^2)dρ =2π∫_{0~1}{(√t)/8}dt =π/6 (1) x=sintcosθ y=sintsinθ z=cost dx/dt =costcosθ-sintsinθ(dθ/dt) =costcosθ-sintsinθcost dy/dt =costsinθ+sintcosθ(dθ/dt) =costsinθ+sintcosθcost dz/dt=-sint (dx/dt)^2+(dy/dt)^2+(dz/dt)^2 =(costcosθ-sintsinθcost)^2 +(costsinθ+sintcosθcost)^2 +(sint)^2 =1+(sintcost)^2 曲線長 =∫_{0~π}√{1+(sintcost)^2}dt

関連するQ&A

  • ベクトル解析学の発散divvの問題について

    ユークリッド空間に、原点をOとするxyz座標をとる。空間からOを除いた領域で定義されたベクトル場v(x)= x/||x||^3 y/||y||^3 z/||z||^3 を考えます。ここに、||x||=√(x^2+y^2+z^2)です。このベクトル場について、 発散divvを計算してください。また、Oを中心とし半径がRの球面S(R)上での面積分∫S(R)v・dSを求めてください。球面S(R)のパラメーター表示は(単位球面)x(u,v)= cosu・cosv cosu・sinv sinu また、計算するとx^2+y^2+z^2=1―(1)です。 解答はdivv=0,面積分の値は4πです。 という問題で解説には「このようにべクトル場が定義されていない点がある場合、この点を囲む閉曲面Sとそれによって囲まる領域Dではガウスの発散定理が成り立ちません。」とあります。 質問1ガウスの発散定理を使わずに、発散divv=0をどのように求めたのでしょうか? 質問2発散divvを求めるのに、偏微分を使って、∂x/∂x+∂y/∂y+∂z/∂z=1+1+1=3では間違いなのはなぜでしょうか? 質問3divv=0とガウスの発散定理による面積分の公式を使わずに、どのように面積分を求めるのでしょうか?これは単位球面だからdivv=0は無視して、単に球の表面積の公式を当てはめてR=1を代入して求めるしか方法はないのでしょうか? 以上3点、途中計算を含めて詳しい解説を宜しくお願いします。 (1)を使って、||x||=1より、v(x)= x y z まではわかりました。

  • ベクトル解析

    ガウスの発散定理のトコなんですけど・・・ まず直接面積分で求めたいんです。 ΓをR^3の原点を中心とする半径a(>0)の球面の北半球部分とします。 Γ上のベクトル場f=2xyi+2yzj+z^2kなんです。 (i,j,kは単位ベクトル) この場合の極座標表現って、 x→asinθcosφ?  (asinθ)*(acosφ)??? yも同様で、asinθsinφ?   (asinθ)*(asinφ)??? zは・・・まー分かりました^^acosθですよね^^ 回答お願いします。

  • ベクトル解析の問題

    こんにちは。ベクトル解析の問題についての質問です。空間曲線の式がR(t)= ti+tj+t^2k, 0<=t<=3 で与えられてて、Plane の式が Z=3-x^2-y^2 で与えられているとき、R(t)の接線とplane 垂線が作る角度を求めよという問題です。まずR(t)を微分してR`(t)=(1,1,2t) と求め、plane の式を偏微分してplaneに垂直なベクトル N=(2x,2y,1) を導きました。そしてdot productを使いcosを求めようと思ったのですが、その先が出来ません。どなたか教えていただけたら嬉しく思います。宜しくお願いします。

  • 曲線と曲面のちがい

    曲線と曲面のちがいを教えてください。 具体的には z = f(x,y) と z(t) = f(x(t), y(t)) の違いとでもいいましょうか。   z = f(x,y) ・・・・・・・(1) は普通曲面を表すと思うのですが  x,y をパラメータ t で表したとき   z(t) = f(x(t), y(t)) ・・・・・・・(2) もしくは   r↑(t) = ( x(t), y(t), z(t) ) ・・・・・・・(3) は本当に曲線しか表していないのですか? (1)でも(2)でも空間座標の1点を表すということでは変わりないと思うのですが。  ベクトル解析の本ではパラメータ s を積分で t と対応させていますが、これは初めから(3)が空間曲線を表していることを前提にしています。(2)、または(3)は曲面にはなり得ないといういことがよくわからないのです。

  • 数学

    xyz空間において、xz平面上で曲線C1:z=sinx(0≦x≦π)とx軸で囲まれた図形をD1とし、yz平面上で曲線C2:z=sin^y(0≦y≦π)とy軸で囲まれた図形をD2とする。またtが0≦t≦πの範囲を変化するとき、2点P1(t,0,sint),P2(0,t,sin^2t)を結ぶ線分P1P2が動いて描く曲面をD3とする。図形D1、D2、曲面D3、xy平面の4つで囲まれる立体図形Kの体積Vをもとめよ。 (解) x=y=tで立体図形をz軸に平行なるように切ってできた平面の面積は  1/2・√2・t(sint+sin^2t)=√2/2{tsint+(1-cos2)/2} よって求める体積は V=√2/2∫(0→π){tsint+(1-cos2)/2}dx =√2/2[-tcost+sint;1/4t^2-1/2tsin2t-1/4cos2t]0→π =√2/2(π^2/4+π-5/4) と考えたのですが、間違っていないでしょうか?

  • ベクトル解析で分からない問題だらけで困っています(

    ベクトル解析で分からない問題だらけで困っています(~_~;) 1. A↑=A↑(t)とB↑=B(t)↑でA↑とB↑が平行で、かつdA↑/dtとB↑が平行であるならばA↑とdB↑/dtも平行であることを示せ。 (略解) A↑×B↑=0の両辺をtで微分せよ。 2. 曲線R1=costi+sintj+3t^2k(t>0)の接線とR2=θj+θ^2kの接線の方向が一致するとき、tとθの値を求めよ。 (i.j.kは基本ベクトル) 答え t=nπ、θ=(-1)^n ×3nπ nは正の整数 3.サイクロイド曲線R(θ)=a(θ-sinθ)i +a(1-cosθ)jの(0<θ<2p)のとき、曲線の長さsをθの関数として表せ。 またこの曲線の単位接戦ベクトルt↑と主法線ベクトルn↑を求めよ。 答え n↑=cosθ/2 i -sinθ/2 j (単位接線ベクトルの解答はありませんでした) の3問です。 できれば詳しい解答を望みますが、解くための考え方などを教えていただけるのもとてもありがたいのでよろしくお願いしますm(_ _)m

  • 応用解析IIIの問題です。

    (1) 曲線Cのパラメータ表示を〈r(t)|=(cost,sint,1)とする。ただし、0≤t≤π/2。このとき、スカラ場φ(r)=xyzの曲線C上における線積分を計算せよ。 (2) 曲線Cのパラメータ表示を〈r(t)|=(cost,sint,1)とする。ただし、0≤t≤π/4。このとき、ベクトル場〈A(r)|=(y,x,x^2)の曲線C上における線積分を計算せよ。

  • ベクトル場の面積分の問題です。

    3次元のベクトル場(i,j,k) である、A=i+j , B=yi+xj それぞれについて、 (1)yz平面上の単位円についての面積分を求めよ。ただし、単位法線ベクトルの向きはx方向とする。 (2)原点中心の半径1の球の表面についての面積分を求めよ。 という問題なのですが、 積分する面をパラメータ表示してやってみたところ、 (1)(x,y,z)=(0,cosθ,sinθ) (0≦θ≦2π) N=(1,0,0) (ベクトルを大文字で表しました;) A・N=(1,1,0)・(1,0,0)=(1,0,0) B・N=(y,x,0)・(1,0,0)=(y,0,0) ∮A・NdS の dsの部分の求め方がいまいちわかりません; (2)では (x,y,z)=(sinθcosφ,sinθsinφ,cosθ) (0≦θ≦π,0≦φ≦2π) ds=|(cosθcosφ,cosθsinφ,-sinθ)×(-sinθsinφ,sinθcosφ,0)| dθdφ =sinθ dθdφ N=(x/2,y/2,z/2) A・N=x/2=(1/2)・sinθcosφ ∮A・NdS=(1/2)・∬(sinθ)^2・cosφ dθdφ =(π/4)・∫cosφ dφ =0? B・N=xy=(1/2)・(sinθ)^2・sin2φ ∮B・NdS=(1/2)・∬(sinθ)^3・sin2φ dθdφ =(4/3)・∫sin2φ dφ =0? となったのですがどこが間違っているかわかりません; どうか教えてくださいm(__)m

  • 大学の微分積分についての問題です!!

    大学の微分積分についての問題です!! (x,y,z)-空間R^3内の半径aの球面S上の極座標を x = asin(φ)cos(θ) y = asin(φ)sin(θ) z = acos(φ)        0≦φ≦π  0≦θ≦2π とする。 球面S上の点P=X(ベクトル)(φ,θ) 接ベクトルの基底、法ベクトル、微小面積要素などを求める。 (1)φ=constなる直線の像となるS上の曲線(緯度)に点Pで接する接ベクトル Xθ(P)=X_θ(P)=( ? ) ←※1行3列 ※X_θは偏微分のこと 同じくθ=constなる直線の像となるS上の曲線(緯度)に点Pで接する接ベクトル         Xφ(P)=X_φ(P)=( ? ) (2)法ベクトル         n(P)=xθ(P)×xφ(P)=( ? ) (3)球面Sの点Pでの微小面積要素、つまり接ベクトルXθ(P)Δθと接ベクトルXφ(P)Δφがつくる 平行四辺形の面積Δσは、( ? )ΔθΔφ (4)パラメータ(θ、φ)が領域G={0≦φ≦π/3,0≦θ≦2πを動く時の 球面Sの部分領域{X(φ,θ);(φ,θ)∈G}⊂Sの曲面積は、S=( ? ) どうかお願いします!!答えだけでなく計算過程もお願いします!! できない場合はできるとこだけでもお願いします!!

  • 数学の問題教えてください

    座標平面上を運動する点Pの時刻tにおける座標(x、y)が、x=sint、y=1/2(cos2t)で表されているとする。 (1)点Pが動く曲線の方程式を求めよ。 (2)点Pの速度ベクトルv↑を求めよ。 (3)点Pの加速度ベクトルa↑を求めよ。 (4)速さ|v↑|が0になるときの点Pの座標を求めよ。 どうかお願いします。