• ベストアンサー
  • すぐに回答を!

円に内接する四角形の問題について・・・(数I)

円に内接する四角形に関する問題でどこが間違っているのかを教えて下さい Q)円に内接する四角形ABCDにおいてAB=5、BC=CD=7、DA=3である (1)∠BACの大きさを求めよ これは分かりました 余弦定理を使って、一発です 60° この計算過程でAC=8も求まりました (2)辺ABのBの方の延長上にAB=BPとなる点Pをとる。2直線AD、PCは、ADのDの方の延長上とPCのCの方の延長上で交わり、その交点をQとする。AQの長さを求めよ。 答えのページに、AQ=40とありました でも、そうならないのです 僕の考え方です (1)より∠BAC=60°なので弧BCに対する円周角の定理より ∠BDC=60° BC=CD=7より、△CBDは二等辺三角形なのでその底角の大きさが等しいので ∠BDC=∠DBC=60° ここで弧CDに対する円周角の定理より ∠CAD=60° PQは円の接線なので、接弦定理より ∠DCQ=∠CBD=60° ここで、△QAC∽△QCD (∵∠CAQ=∠DCQ=60°、∠AQPか共通) より、CQ=y、DQ=χとすると     8:7=y:χ     8:7=(χ+3):y という連立方程式が成立する・・・ となったんですけど、これだったら、χ=37にならないとおかしいんですね・・・ でも、どう計算してもχ=37にならないし、ほかの辺の比をとってもなりません ということは、これ以前のどこかで間違いをしてしまっていることが第一に考えられるのですが、何回見直しても間違いが見つからないです どこが間違っているのでしょうか??? どうかご教授お願いします!!!

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数581
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • Quarks
  • ベストアンサー率78% (248/317)

>PQは円の接線なので、… いいえ、PQは接線ではありません。単に、P,Cを通る直線です。 ちょっと考えてみると、 AB=BP 或いは AP=10 という条件を使わないで「解けちゃった」のはおかしいですよね。 (解答) △APQにおいて、線分ACは頂角Aの二等分線ですから、「頂角の二等分線と辺の比」の定理から AP:AQ=PC:CQ △ACPに余弦定理を適用してPCを求めると (PC)^2=10^2+8^2- 160・cos60° PC=√(84) AP:AQ=PC:CQ より AQ=Xとおいて ∴ CQ=(√(84)/10)・X △APQに余弦定理を適用して {(√84)+(√(84)/10)・X}^2=10^2+X^2-2X・cos120° これを解くと X=40,5/2 5/2は不適当ですから、X=40 もっとスマートな解答があるのかも知れませんが、一例として。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

PQが円周上の一点Cを通るとは限らないからPQは接点じゃない! ってことに気づかせてくれました 解説も詳しくありがとうございます ありがとうございます

その他の回答 (1)

  • 回答No.1

>PQは円の接線なので、 これはどこからきたのでしょう? これが間違いのもとでは?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

PQが円周上の一点Cを通るとは限らないからPQは接点じゃない! ってことに気づかせてくれました ありがとうございます

関連するQ&A

  • 円に内接する四角形の問題です

    円に内接する四角形ABCDにおいて、AB=2、CD=3、∠ABC=60°のときBCとDAの長さを求めよ。 この問題はこれだけの条件で答えがでるのでしょうか? また、 円に内接する四角形ABCDにおいて、AB=2、BC=3、∠ABC=60°のときCDとDAの長さを求めよ。 この場合はどうでしょうか? もし解ける方がいましたら教えてください。

  • 円に内接する四角形

    円に内接する四角形ABCDにおいて、BC=2,CD=3,∠DAB=60°、∠CDA=90°とする。 このとき、対角線ACとBDの長さ、および、辺ABとDAの長さを求めよ。 という問題です。 BDは余弦定理で、ACは正弦定理で外接円の半径を出し、それを2倍することで求められました。 その次はどうすれば良いのでしょうか。 よろしくお願いします。

  • 円に内接する四角形の問題です

    円に内接する四角形ABCDにおいて、AB=2、BC=3、∠DAB=60°のときCDとDAの長さを求めよ。 教えていただけると助かります。

  • 円に内接する四角形の問題

    問題:円に内接する四角形ABCDがあります。AB=3、BC=4、CD=DA=2のときの、 cos∠Bを求めてください。 わかるかた、お願いします!

  • 四角形に内接する円について

    円が四角形ABCDに内接するときAD+BC=AB+DCとなるのは簡単に証明できたのですが、 逆、つまり、”AD+BC=AB+DCならば四角形ABCDの内接円が存在する”が示せません。 証明分かる方お願いします。

  • 円の内接四角形

    皆様、こんにちは。 幾何の問題なのですが、 『向かい合う角の和が180度の四角形ABCDにおいて、 ∠BAC=∠BDCを、四角形ABCDが円の内接四角形だという事実を用いずに証明できるでしょうか?』 よろしくお願いします。

  • 三角比(円に内接する四角形に関する問題)

    円に内接する四角形ABCDにおいて、AB=AD=1、∠BAD=90°、∠BAC=θとし、対角線ACとBDの交点をEとする。 (1)AE、BE、CE、DEの長さを、sinθ、cosθを用いて表せ。 (2)sin∠AEDをsinθ、cosθを用いて表せ。 (3)△ABE、△BCE、△CDE、△DAEの外心をそれぞれP、Q、R、Sとするとき、四角形PQRSの面積を求めよ。 (1)図示してみると、BDが直径、∠BAC=∠BDCが成り立っていることはわかったのですが、そこからどのようにしてAE、BE、CE、DEの長さを表せるのでしょうか? (2)(1)でDEが出せれば、△AEDで正弦定理を用いればできるのではないかと思います (3)外心って、外接円の中心で各辺の垂直二等分線の交点のことですよね?正弦定理で半径をだすのでしょうか? (1)すら解けなくて困っています。 回答いただければ幸いです。宜しくお願いします

  • 数1の三角比、円Oに内接する四角形の問題

    数1の三角比、円Oに内接する四角形の問題 お世話になってます。またわからないので教えてください。 数1の三角比、円Oに内接する四角形ABCDにおいて、AB=3、BC=CD=√3とする。 また、cos∠ADC=-√3/6である。 ACの長さを求めよ。 これは、AC=Xとして、 x^2=(3^2+√3^2)-(2*3*√3*cos-√3/6)で計算するのでしょうか? でもこれだとcos-√3/6だと何度かわかりません。

  • 円に内接する四角形

    円に内接する四角形ABCDにおいて、AB = 13 , BC = 14 , CD = 4 , DA = 13 とする。 ( 1 ) 線分ACの長さを求めよ。 AC = 15 ( 2 ) sin ∠ ABC の値を求めよ。 sin ∠ ABC = 12/13 ( 3 ) 四角形ABCDの面積を求めよ。 S = 108 ( 4 ) 線分AC と線分 BD の交点をEとする。AEの長さを求めよ。 △ ABC と △ CBD は BD を底辺とすると底辺共通なのでその面積比は高さの比となる AE : EC = △ ABD : △ CBD = 1/2 ・13・13・sin∠ BAD : 1/2 ・14・14・sin ∠BCD = 13・13 : 14・4 = 169 : 56 よって AE = AC × 169 / ( 169 + 56 ) = 15 × 169 / 225 = 169 / 15 ( 4 )の「△ ABC と △ CBD は BD を底辺とすると底辺共通なのでその面積比は高さの比となる 」 はわかるんですが 「 AE : EC = △ ABD : △ CBD 」の、なぜ AE : EC = 面積比 になるんですか? というか、なぜ AE : EC = 高さの比 になるんですか?

  • おうぎ形の内接円て・・・

    平面上に3点A,B,CがありAB=BC=CA=1である。点Bを中心に半径1の弧ACをかく、このとき線分BC,弧CA、線分ABに内接する円の半径を求めよという問題でおうぎ形の内接円の半径の求め方ってありますか? またさらに点Cを中心に半径1の弧ABをかく。 このとき線分BC、弧CA、弧ABに内接する円の半径を求める問題、そして点Aを中心に半径1の弧BCをかいてこのとき弧BC,弧CA,弧ABに接する内接円の半径はどうやって求めればいいでしょうか?できれば詳しく教えていただけるとありがたいです