• 締切済み
  • すぐに回答を!

この問題解いて下さいm(_ _)m

3以上の自然数nに対して、 Xn+Yn=Znを 満たすような自然数 X、Y、Zは存在しない、 これを証明せよ!! (天才数学者が、8年かかった問題) よろしくお願いします!

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.3

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございましたm(_ _)m

  • 回答No.2

サイモン・シン著/青木薫訳 「フェルマーの最終定理」 新潮社刊が参考になると思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

読んでみます ありがとうございました

  • 回答No.1

この解答欄は、その証明を書くには狭すぎる。。。。。。w

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すいません

関連するQ&A

  • 代数学の問題を教えて下さい。

    この問題が分かりません。お願いいたします。 行列A= (0 2 -1) (1 1 -1) (-2 2 1) とする。 X=1,Y0=0,Z0=0である。n>=0で漸化式 X(n+1)=2Yn-Zn Y(n+1)=Xn+Yn-Zn Z(n+1)=-2Xn+2Yn+Zn を満たす数列{Xn}{Yn}{Zn}を考える(n>=0)。このとき 一般項Xn,Yn.Znを求めなさい という問題です。どうかお願いいたします。

  • 不等式の問題

    x1>x2>・・・・>xn y1>y2>・・・・>yn という関係のある実数がある。 yの並べ替えたものをz1、z2・・・・znとする。 Σ(k=1~n)xk・yk≧Σ(k=1~n)xk・zk となることを証明せよ。 という問題がありました。 どうやって解けばよいでしょうか?結構いろいろな解法があるようですが、わかりません。

  • mathematicaでリストの格納

    mathematicaでTable関数で作成したリスト {{x1, y1, z1, f(x1,y1,z1)}, {x2, y2, z2, f(x2,y2,z2)}, ... , {xn, yn, zn, f(xn,yn,zn)}} 中のx1~xnまでの各成分とy1~ynまで(、z1~znまで、 f(x1,y1,z1)~f(xn, yn, zn)までの各成分)をそれぞれ配列に格納するにはどうすればいいのでしょうか?(C言語のようにループ文で配列に格納することはできないのでしょうか?) もしくは、行列中で列の成分を取り出すことはできますか? どなたか解法を示していただければ幸いです。

  • 数学B 数列 センター向けの問題です

    数列{xn}は x1=5,x(n+1)=xn+2 (n=1,2,3,・・・) で定義された数列である。 x2=7,x3=9 であり、 xn=2n+3 である。 次に、数列{yn}は y1=3,y(n+1)=yn+2n+3 (n=1,2,3,・・・) で定義された数列である。このとき yn=n^ア+イn Σ[k=1→n]yk=(1/6)n(n+ウ)(エn+オ) である。 さらに、数列{zn}を x1,y1,y2,x1,x2,x3,y1,y2,y3,y4,・・・ とし、この数列{zn}を x1|y1,y2|x1,x2,x3|y1,y2,y3,y4|・・・ のように、1個、2個、3個、4個、・・・と区画に分ける。すなわち、l=1,2,3,・・・として 第(2l-1)区画にはx1,x2,x3,・・・,x(2l-1) の項があり、 第2l区画にはy1,y2,y3,・・・,y2l の項があるように区画に分ける。 このとき、z199は第カキ区間のク番目の項であるから z199=ケコ である。また Σ[k=200→240]zk=サシスセ である。 解答 n^ア+イn=n^2+2n (1/6)n(n+ウ)(エn+オ)=(1/6)n(n+1)(2n+7) カキ=20 ク=9 ケコ=99 サシスセ=3815 この問題の解き方がわかりません 解き方を教えて下さい よろしくお願いします

  • 群数列っぽい問題

    添付の図のように自然数が1,2,3.... を1を中心に反時計回りに渦巻状に並べる。 x1=2 x2=12 x3=30・・・ のように2を先頭に右斜め上に続く数列を{xn} Y1=6、y2=20、Y3=42・・・のように 6を先頭に右斜め下に続く数列を{Yn}とするとき、 {xn}{Yn}を求めよ。 という問題で、解答では、 1からXnは横2n縦2n-1の長方形内にあるので Yn=2n(2n+1) 同様に1からYnは横2n+1、縦2nの長方形内にあるので Yn=2n(2n+1) という解説だったんですが、何をしているのかまったくわかりません。 なぜ、長方形を利用しているのか、「1からXnは横2n縦2n-1の長方形内にあるので」 「同様に1からYnは横2n+1、縦2nの長方形内にあるので」はどこからきたのか まったくちんぷんかんぶんです。この解答は何をしているのでしょう? ヒントで、 正方形状に区切りを入れて 1|2,3,4,5,6,7,8,9|10,11・・・・・25| という群数列を考えるとよい みたいなことが書いてあったのですが、これがどう関係しているのかも まったくわかりません。。。。

  • この問題分かる方いますか?

    n≧3のときx^n+y^n=z^nを満たす自然数x,y,zが存在しないことを証明せよ。 解説お願いします

  • 代数学☆イデアルの問題!!

    次の問題について教えてください!! N:自然数 R:環 L,M:左イデアル LM={x1・y1+x2・y2+・・・+xn・yn |         xi∈L,yi∈M (i=1,2,・・・,n),n∈N} LMがイデアルであることを示せ。 左イデアルであることは示せたんですが、右イデアルであることが示せません。 右イデアルを示すために a∈LM,r∈Rに対して a=x1・y1+x2・y2+・・・+xn・yn (xi∈L,yi∈M) とおくと、 a・r=(x1・y1+x2・y2+・・・+xn・yn)・r    =(x1・y1)・r+(x2・y2)・r+・・・+(xn・yn)・r    =x1・(y1・r)+x2・(y2・r)+・・・+xn・(yn・r) になって、 a・r∈LMを示すのにyi・r∈Mを示すのかな、と思ったのですが、 どう示すのか分りません。  やり方自体間違っているのでしょうか、それともyi・r∈Mを示す方法があるのでしょうか。教えてください!!

  • 論理回路

    2n変数論理関数 fn(x1,x2,...,xn,y1,y2,...,yn)={ 1 N(x1,x2,...,xn)>N(y1,y2,...,yn)の時                 0 その以外 について、以下の問に答えよ。ここで、Nは入力を2進数とみなしたときの数を値として持つ関数であり、N(x1,x2,...,xn)=Σ(i=1~n)xi2^n-iと表すことができる。 問 任意のn>=2に対して     fn(x1,x2,...,xn,y1,y2,...,yn)= x1・y1(bar) + (x1+y1(bar))・fn-1(x2,...,xn,y2,...yn) が成り立つことを示せ。ただし、(bar)が論理否定、・が論理積、+は論理和を表す という問なのですが、どのように証明をすればよいのでしょうか? お願いします。

  • 数学の宿題が解けなくて困っています。

    以下の数式の証明は、どうやったらいいですか? nが3以上の自然数のとき、 X^n + Y^n = Z^n となる、0以外の自然数X,Y,Zの組み合わせが存在しないことを証明しなさい。 パッと見、簡単そうに見えるのですが、昨日からずっと考えているのですが、どうしても解けません。 よろしくお願い致します。

  • 綺麗なローレンツ・アトラクタの描き方?

    ローレンツ方程式 dx/dt = p*(-x + y) dy/dt = r*x - y - x*z dz/dt = -b*z + x*y をEuler法を利用して、プログラムを作成して、gnuplotでplotしているのですがこのローレンツ・アトラクターの2つの円の中心が均一に(私の場合は左円の中心が小さく、右円の中心が大きい)なるようにして、 綺麗なアトラクターを描くには刻み幅と計算回数をどれくらいの値にすればいいのでしょうか? 私は刻み幅h = 0.001、計算回数n = 100000としてます。 *Euler法に変換したプログラムと図は下の通りです。 図 http://www26.tok2.com/home/parshem//image/lorenz-O.jpg #include <stdio.h> #include <math.h> int main(void) { /*---Parameter---*/ int p = 10; int r = 28; double b = 8.0/3.0; double x, y, z, xn, yn, zn, h, i, n; x = 1.0; y = 1.0; z = 1.0; h = 0.001;//ステップの刻み n = 400000; /*---Lorenz Equation & Euler---*/ for(i = 0.0 ; i < n ; i++){ xn =x + h * p*(-x + y) ; yn =y + h * ( r*x - y - x*z ); zn =z + h * ( -b*z + x*y ); printf("%lf\t%lf\t%lf \n", xn, yn, zn); x = xn; y = yn; z = zn; } return 0; }