• 締切済み
  • 困ってます

因数分解、部分分数分解(ラプラス逆変換)

下式のラプラス逆変換をしたいのですが、そのための部分分数分解ができません。 おそらく分母を因数分解する必要があると思われますが、そこから教えて頂けないでしょうか? F(x)=1/[ x(Ax^4+Bx^3+Cx^2+Dx^+E) ]

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1066
  • ありがとう数0

みんなの回答

  • 回答No.1

分母はx×4次式ですから, x*A*(x-α1)*(x-α2)*(x-α3)*(x-α4) と因数分解できます。α1~α4は, 4次方程式Ax^4+Bx^3+Cx^2+Dx^+E=0の解です。 4次方程式なので解の公式で解くのは大変です。 A,B,C,D,Eが数値で分かっているなら,数値的に解を出すことはできます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 部分分数分解について教えてください。

    部分分数分解について教えてください。 分子がS分母が(s+2)^2 ×(s+2s+10)の分数F(S)を部分分数分解したいのですが、途中で分からないところがありあります。 (s+2s+10)を因数分解するとS=-1±j3となり F(S)=1/{(s+2)^2×(s+1-j3)×(s+1+j3)}までわかります。 ここからよくわからないのですが、部分分数分解すると F(s)=A/(s+2)^2 + B/(s+2) + C/(s+1-j3) + D/(s+1+j3) ※ABCDは自分で置いたもの。 こうなるのですが、ここまでの過程を教えていたいただけないでしょうか? お願いします。

  • 部分分数分解について

    こんばんは。 部分分数分解というもののついて質問です。 一般的に、分母が(x+n):nは定数 の積になっていて、分子が分母の次数より低ければ、分母の因数で部分分数に分解することができます。 このとき各項の分子は定数になっています。 例) (x+3)/(x+1)(x+2)=2/(x+1)-1/(x+2) では分母が因数分解できない場合や重解のときはどうなるのでしょうか。 例)3x/(x^2+1)(x+5)^2 など。 また、分解したあとの項の分子にxが残っている場合もありました。 これはどのような時に起こるのでしょうか。 部分分数分解とはどのような理論にそってやっていることなのかイマイチ直感的に理解できないので、詳しく教えてください。 ただ、高校生でも理解できるレベルでお願いします(><)

  • 因数分解と部分分数の和に関する問題

    因数分解と部分分数の和に関する問題 f(x)=x^5-3x^4+5x^3-5x^2+3x-1の時、(1)因数分解せよ (2)(x^3-3x+3)/f(x)を部分分数の和に分解せよ。という問題です。(1)については、f(1)=0より、f(x)=(x-1)(x^4-2x^3+3x^2-2x+1)に因数分解できるのですが、さらに因数分解できるのでしょうか? (2)については、部分分数の和に分解するポイントはどうすれば良いのでしょうか?すみませんが、よろしくお願いします。

  • 部分分数の和に分解

    現在、部分分数分解で問題が解けなくて困っています。 問: x^3-3x+3/f(x) を部分分数の和に分解せよ まずf(x)=x*g(x)とおき 与式をx^3-3x+3/x*g(x)と変形し A/x+(bx^2+cx+d)/g(x)と分解します。 ですがこの後どうやっていけばいいのかがわかりません。 なんか部分分数の基本的なところから理解が足りてない気がします。 どなたかご指導のほどよろしくお願いします。

  • 数学 部分分数分解

    部分分数分解 3x+2/x(x+1)^2 を部分分数分解せよ。 という問題 解答は 3x+2/x(x+1)^2=(A/x) + (B/x+1) + 〔C/(x+1)^2〕 とおいて、xの恒等式として解くと書いてあり、注意書きのところに 右辺を (A/x) + 〔B/(x+1)^2〕 としてはダメ とあるのですが、いまいち理由がわかりません。 〔B/(x+1)^2〕について、分母が二次式だから分子をBx+Cにしたら大丈夫なんですか? また、解答の (A/x) + (B/x+1) + 〔C/(x+1)^2〕 のように、なぜそれぞれ分けて三つも書かないといけないのかがわかりません。 また、もし 3x+2/x(x+1)^2 ではなく、3x+2/x(x+1)^4 だとしたら (A/x) + (B/x+1) + 〔C/(x+1)^2〕 + 〔D/(x+1)^3〕 + 〔E/(x+1)^4〕 となるんですか? また 3x+2/x(x+1)(x+2)(x+3) のような感じだったらどうなるのか・・・ 上の問題に限らず、分母をどのように分けて恒等式を作ったらいいのかがわかりません。 部分分数分解の分母の分け方の考え方を教えてください。

  • 部分分数分解について

    F(x)=1/(s^2+3)^2 を部分分数分解法で解く問題ですが、 A/(s^2+3)+B/(s^2+3)^2 という風に書きなおすこができると言われましたが、この後の計算方法が分かりません。分かりやすくお願いします!!

  • 1/(ax^n+b) を部分分数分解

    1/(ax^n+b) を部分分数分解するにはどうしたらよいでしょうか。

  • 高校数学の部分分数分解についての質問です。

    1/x^2(x+1) = a/x^2 + b/(x+1) + c/x ・・・・・・ (1)  両辺を x^2(x+1) で払うと 1 = a(x+1) + bx^2 + cx(x+1)  x = 0 のとき a = 1、x = -1 のとき b = 1 なので 1 = (x+1) + x^2 + cx(x+1)  x = 1 のとき 1 = 2 + 1 + 2c なので c = -1.  検算してみると確かに 1/x^2(x+1) = 1/x^2 + 1/x+1 - 1/x となるのですが、これを導くのになぜ(1)のような形を前提としておくのでしょうか?  a/x^2、b/(x+1) に加え c/x をおく理由がわかりにくいのです。というのも(1)の左辺の分母は分母は x^2 と (x+1) かけたものなのですから 1/x^2(x+1) = a/x^2 + b/(x+1) でもよさそうなものですが、(1)と同じように計算しても   1 = a(x+1) + bx^2 ・・・・・・ (2)   x = -1 → b = 1.   x = 0 → a = 1.   1/x^2 + 1/(x+1) = (x+1+x^2)/x^2(x+1)  となり全然ダメなことは確認できます。しかしなぜこれではダメなのかと問われるとうまく説明できません。  たとえば(1)を少し変形した   1/(x-1)^2(x+1) = a/(x-1)^2 + b/(x+1) + c/(x-1) を(1)と同様に計算してみると   a = 1/2, b = 1/4,  c = -1/4 と正しく部分分数分解されます。他にも三次式の分母の部分分数分解をいくつか試みた結果から推察するとどうやら x の三次式の分母が一次式で因数分解できるときは   1/(x+α)(x+β)(x+γ) = a/(x+α) + b/(x+β) + c/(x+γ) とおける。  三次式の分母 = 0 が重解を持つときは   1/(x+α)^2(x+β) = a/(x+α)^2 + b/(x+α) + c/(x+β) とおける。 ような気がするですが、そうしていい理由がいまいちしっくりきません。 http://mathtrain.jp/bubun をみたら(1)のような分解は証明なしに利用していいとあります。きちんと証明するには高校レベル以上の数学が必要なのでしょうか?  とりあえずは(2)がダメな理由がはっきりわかるだけでもありがたいのです。

  • 部分分数分解について

    x+5/x^2+x-2を部分分数分解せよ。という問題なのですが、 この問題の解法と、部分分数分解について教えていただけませんでしょうか? よろしくお願いします。

  • 部分分数分解について

    積分の単元に入り、分数を部分分数分解して積分する作業が必要になってきたのですが、例えば 4/{(x+1)^2(x^2+3)}=A/(x+1)+B/(x+1)^2+(Cx+D)/(x^2+3) と表せるのはなぜですか?単純に A/(x+1)^2+B/(x^2+3)と表せるのはわかりますがなぜ上記のような表現になるのか分かりません。どなたか教えていただけないでしょうか?