• 締切済み

ロルの定理の証明

まず、ロルの定理とは関数 f(x)が閉区間 (a,b)で連続、開区間 (a,b)で微分可能でf(a)=f(b)ならば f ' (c)=0, a<c<b を満たす実数cが存在する。 証明 (1) f(x) が定数のとき 常にf ' (x) =0 であるから、明らかに定理は成り立つ。 つ ※なぜ成り立つのでしょうか。簡単な例をあげていただきたいのですが。 (2) f(x)が定数ではないとき f(x)は閉区間(a,b)で連続であるから、最大値、最小値の定理より、この区間で最大値と最小値をもつ。 (i) f(a) = f(b)が最大値をとる点のx座標をcとすると、a<c<bであるから、a<c<bであるから、a<c+⊿x<bを満たす⊿xに対して f(c+⊿x) ≦ f(c) となる。  ゆえに、⊿x>0 のときf(c+⊿x) -f(c) /⊿x ≦ 0   (1) ⊿x<0 のときf(c+⊿x) -f(c) /⊿x ≧ 0 (2)  f(x)はx=cで微分可能であるから lim(⊿x→0) f(c+⊿x) -f(c) /⊿x = f ' (c) (1)より、f ' (c) ≦ 0      (2)より、f ' (c) ≧ 0 したがって f ' (c) =0 (ii) f(a) = f(b) が最大値であるとき、最小値をとる点をcとすると、a<c<b となる。 (1), (2)からロルの定理は成り立つ。 終 ※ (2)の部分に関していえば、cが最大値となるような、a,b間で連続のなめらかな曲線を書くと、f(c+⊿x) < f(c) であることが読み取れるので理解できるのですが、その逆の⊿x>0 のときf(c+⊿x) -f(c) /⊿x ≦ 0 の場合において、f(c+⊿x) は c + x の位置は c の左側 0より、またcが最大値なので、f(c+⊿x) < f(c) には変わりなし。 ただし、⊿x で割るので、f(c+⊿x) -f(c) /⊿x ≧ 0 となる。といった解釈でよろしいでしょうか。 次に、f(x)はx=cで微分可能であるから lim(⊿x→0) f(c+⊿x) -f(c) /⊿x = f ' (c) この式は微分係数の定義により導いたと思うのですが、いまいち、この式がぱっと頭にうかびません。 グラフを使ってこの式の導き方を表すことは可能ですか。 お願いします。

みんなの回答

  • Yuki3814
  • ベストアンサー率28% (2/7)
回答No.2

グラフを忘れました。

  • Yuki3814
  • ベストアンサー率28% (2/7)
回答No.1

「xの二乗」は「x^2」と表します。 >(1) f(x) が定数のとき >常にf ' (x) =0 であるから、明らかに定理は成り立つ。 >※なぜ成り立つのでしょうか。 そもそも微分とは「傾きの関数」です。 例えば f(x) = x^2 を微分するとf'(x)=2x となりますね。 これにx = 1を代入すると f'(x) = 2となります。 これはf(x)のx=1における傾きが2ということになります。 問題に戻って f(x)が定数ならば微分した値は0になります。 これはxがどんな値でも傾きが0ということになります。 明らかに、傾きが0(f'(c) = 0)となるcは存在します。 >次に、f(x)はx=cで微分可能であるから lim(⊿x→0) f(c+⊿x) -f(c) /⊿x = f ' (c) >この式は微分係数の定義により導いたと思うのですが、いまいち、この式がぱっと頭にうかびません。  >グラフを使ってこの式の導き方を表すことは可能ですか。 lim(⊿x→0) f(c+⊿x) -f(c) /⊿x = f ' (c) は傾きを求めているだけです。 グラフを見てください lim(⊿x→0) f(c+⊿x) -f(c) /(c+⊿x) - c = f ' (c)と考えてみてください。 Δxは0.00000001くらいだと考えると、x = cでの傾きを求めていることになります。

関連するQ&A

  • ロルの定理の証明、高校数学、再質問

    ロルの定理;f(x)を[a,b]において連続、(a,b)において微分可能な関数とする。さらに、f(a)=f(b)のとき、f´(c)=0かつa<c<bを満たすcが存在するを証明 (本の記述)f(a)=f(b)≠0であればg(x)=f(x)-f(a)を考えることで、g(a)=g(b)=0となるから、最初から、f(a)=f(b)=0として証明してもよい。(★) (ア)f(x)≡0のときはa<x<bなる任意のxでf´(x)=0だから定理は成り立つ。 (イ)f(x)は恒等的に0でない時(f(x)≡0の否定です。PCで記号が出ません} f(d)≠0となるdが(a,b)に存在する。 仮にf(d)>0とすると最大値の定理より、、[a,b]にf(x)の最大値が存在するが、 最大値は0でない(aでもbでもない)から そこで最大値を与えるxをcとすると、∀x∈[a,b]に対し、f(c)≧f(x)よりlim(h→+0){f(c+h)-f(h)} /h≦0、lim(h→ー0){f(c+h)-f(h)}/h≧0となる。f(x)はcで微分可能だから、lim(h→+0){f(c+h)-f(h)} /h=lim(h→ー0){f(c+h)-f(h)}/h=0 ゆえにf´(c)=0 したがって定理は証明された。 ★の仮定をしないとイではどのように議論が進むのでしょうか?詳しく教えてください。

  • ロピタルの定理の証明

    2つの関数f(x)g(x)がx=aを含む区間で連続、x≠aの区間で微分可能で、g´(x)≠0、f(a)=f(b)=0とすると、この時αを一定の数として、 lim(x→a)f´(x)/g´(x)=αならばlim(x→a)f(x)/g(x)=αを証明したい。 (本の内容) f(a)=f(b)=0であるから、f(x)/g(x)=f´(c)/g´(c)x<c<aまたはa<c<X x→aのときc→aであるから lim(x→a)f(x)/g(x)=lim(c→a)f´(c)/g´(c)=lim(x→a)f´(x)/g´(x)(★) (疑問点) ★の変形部分がなぜそうなるのかがわかりません。 おしえてください。

  • ロルの定理の前提『[a,b]で連続、(a,b)で微分可能』について。

    皆様、お世話になります。よろしくお願いします。 __________________________________ ロルの定理 f(x)が閉区間[a,b]で連続、開区間(a,b)で微分可能でf(a)=f(b) ならばf'(ξ)=0、a≦ξ≦bなる点ξが存在する。 ___________________________________ の前提部分の『閉区間[a,b]で連続、開区間(a,b)微分可能』 がいまいちよく分かりません。 定義域の端点においても微分可能が定義でき、なおかつ微分可能であれば連続であるので 『閉区間[a,b]で連続、開区間(a,b)微分可能』を『閉区間[a,b]において微分可能』とまとめてしまっても良いような気もするのですが、 このようにしない理由は何なのでしょうか? よろしくお願い致します。

  • ロピタルの定理

    [定理] f(x),g(x)が開区間(a,b)で微分可能で、  lim_{x→a+0}f(x)=0、 lim_{x→a+0}g(x)=0、 g'(x)≠0 のとき、lim_{x→a+0}{f'(x)/g'(x)}が存在すれば、  lim_{x→a+0}{f(x)/g(x)}=lim_{x→a+0}{f'(x)/g'(x)} ________________________________ (proof) f(a),g(a)が定義されていて、f(a)=0,g(a)=0ならば、f(x),g(x)は[a,b)で連続である。 そういう場合は、新しくf(a)=0,g(a)=0と定義すれば、f(x),g(x)は[a,b)で連続となる。 こうしておいて、(a,b)のxをとれば、f(x),g(x)は[a,x)で連続、(a,x)で微分可能、かつ(a,x)でg'(x)≠0だから、コーシーの平均値の定理より、  f(x)/g(x) = {f(x)-f(a)}/{g(x)-g(a)} = f'(c)/g'(c)  (a<c<b) のcが存在し、x→a+0 ならばcも c→a+0 となるから、  lim_{x→a+0}{f(x)/g(x)}=lim_{c→a+0}{f'(c)/g'(c)} lim_{x→a+0}{f'(x)/g'(x)}の存在は仮定から保証されているので、  lim_{c→a+0}{f'(c)/g'(c)}= lim_{x→a+0}{f'(x)/g'(x)}                               (q.e.d) このように、ある参考書に定理の証明があったのですが、この証明で、  "lim_{x→a+0}{f'(x)/g'(x)}が存在すれば" という仮定はなぜ必要なのでしょうか? 簡単なことかもしれませんが、よろしくお願いします。

  • ロルの定理を使わずに、高校生が解くにはどうすれば良いか?

    ロルの定理を使わずに、高校生が解くにはどうすれば良いか? xについての実数係数の3次方程式:f(x)=x^3+ax^2+bx+c=0は 1/4+a/3+b/2+c=0のとき、0<x<1に必ず実数解を持つ事を証明せよ。 条件:1/4+a/3+b/2+c=0を見ると、3次方程式の不定積分の係数になっている。 f(x)=x^4/4+ax^/3+bx^2/2+cx とすると、f(1)=0であるから、問題は「f´(x)が実数係数の4次式で f(1)=f(0)=0のとき、f´(x)=0は 0と1の間に実数解を持つ事を証明せよ」という事になる。 一見してわかるように、ロルの定理の特別な場合であるが、高校生に(ロルの定理なんかは知らないから)どのように説明したらいいのだろうか? ロルの定理を使わない証明の私案 f(x)が定数でないなら、f(x)=0でないxがある。そのようなxの一つの値をαとすると、f(α)>0ならば、0≦x≦1でのf(x)の最大値≧f(α)>0. f(1)=f(0)=0からf(x)が最大となるxの値は0と1の間にある。 f(α)<0の場合も同様に証明できる (以下、省略)。。。。。としても、高校生には到底無理。 レベルとしても高校数学を超えているのは承知の上ですが、何か方法がないだろうか?

  • 平均値の定理

    f(x)=2√xと区間[1,4]について平均値の定理をみたすcの値を求めよ。 (解答) f(x)は(1,4)で微分可能で、、、 (疑問) (1)どうやって微分可能なことを調べたのでしょうか? (2)この解答では(1,4)で微分可能なことしかふれておりません。 確かに(1,4)で微分可能ならば、(1,4)では連続ですが、平均値の定理を使うには、区間[1,4]において 連続であることを言わなければならないと思うのですが、なぜ触れていないのでしょうか?

  • 平均値の定理を使うときに,最初に2つの宣言があります。

    平均値の定理を使うときに,最初に2つの宣言があります。 y=f(x)は区間[a,b]で連続で,区間(a,b)で微分可能であるとき,平均値の定理より・・・となるわけですが,(1)y=f(x)は区間[a,b]で連続 (2)区間(a,b)で微分可能である ということですが,この2つは何が根拠なのですか?こういうことであってますかね? y=f(x)が,例えば,2次関数(放物線)であった場合, (1)すでにこのグラフの形を学んで知ってるので,そのグラフの形状を根拠に区間[a,b]で連続という。 (2)f(x)の導関数f'(x)があることを,すでに学んで知っている。また,f(x)が区間[a,b]で連続でなめらかであるから,f'(x)も区間(a,b)で全域で存在する。開区間になるのは,左微分係数=右微分係数=f'(a)が出来ないから,開区間になる。 ということでいいのでしょうか?

  • 平均値の定理の細かい疑問

    f(x)=2√xと区間[1,4]について,平均値の条件を満たすcの値を求めよ。 解 f(x)は区間(1,4)で微分可能でf`(x)=1/√x・・・・・・・・以下省略 教えてほしいところ 解説には上のように書いてあったんですが、f(x)は区間(1,4)で微分可能という記述が変な気がします。平均値の条件は[a,b]で連続で(a,b)で微分可能ですよね?? 上の記述では(a,b)で連続で(a,b)で微分可能という意味しかもちません。 これでは平均値の定理の条件が不十分なので問題があるんでは??

  • 連続性のある関数を、中間値の定理に基づいて、実数解があることを示す方法がわかりません(ToT)

    微分積分を勉強しているのですが、全く理解できない問題がありまして・・・。 【問題】 方程式3x=2^x+2^-xは、区間(0,1)の中に少なくとも一つの実数解をもつことを示せ。 【解答】 f(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続であり、 f(0)=-2<0 f(1)=3-(2+1/2)=1/2>0 である。中間値の定理(※)により、 f(x)=3x-(2^x+2^-x)=0 であるようなxが、区間(0,1)の中に、少なくとも一つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ ※連続関数の中間値の定理 関数f(x)が、閉区間[a,b]で、連続でf(a)≠f(b)のとき、f(a)とf(b)の値kに大して、 f(c)=k である点cが、開区間(a,b)の中に少なくとも1つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ 読みにくいと思いますので、添付ファイルもご覧にいただきたいのですが、どうしてf(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続になるのでしょうか? 関数f(x)が「連続であるかどうか」を調べるには、例えば、f(x)をaで微分した「lim(x→a) f(x)」と、元の関数f(x)がx=aの時、すなわち「lim(x→a) f(x)=f(a)」、「f'(a)=f(a)」となる時、連続なんですよね? ですが、f(x)=3x-(2^x+2^-x)は、変数xが指数としてくっ付いてるので、どう微分していいのやら・・・。 なので、「全区間Rは連続であり」と言われても、全くピンときません(ToT) どうして「<0」「>0」など、0から目線で証明を進めているのかもわかりません(>_<) 皆様のお力をお借しいただきたい次第です。 よろしくお願いします<m(__)m>

  • テイラーの定理について

    テイラーの定理は関数f(x)が、閉区間[a,b]で連続、開区間(a,b)でn+1回微分可能なのに、なぜf′(a)やf“(a)みたいにaで微分できているのでしょうか?