• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:Uとその転置行列の積について)

Uとその転置行列の積について

このQ&Aのポイント
  • 行列の積について質問です。
  • U=(ux,uy,uz)t   (tは転置行列の記号)の場合、UUtはどのようになるのでしょうか。
  • UUt = ux^2+uy^2+uz^2 ではなく、UUt = | uxux, uyux, uzux | | uxuy, uyuy, uzuy | | uxuz, uyuz, uzuz | となります。どう理解すればこのような行列になるのでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.5

#2です。 A#2の補足の質問について >自分の解ってなかった所が分かりました。 >大変な勘違いをしていたのですね。 指摘した通り大変な、しかも基本的なことの勘違いで、これまで何故通り抜けてこられたのか不思議です。 >因みに下記の部分について参考になるサイトとか有りませんでしょうか? >自分の認識では左の掛けられる側の列数と右の掛ける側の行数が一致していないと計算できないと勘違いしていたようです。 一列と一行の掛け算でも 一行と一列の掛け算でも 計算できます。 なので知識としては合ってます。 しかし、前半の知識が抜け落ちて見えるようです。 >ググッてみたんですが、どうも該当するものが出てこないです。 >何卒宜しくお願いいたします。 参考URLの[行列の積]の所をご覧下さい。 ●[m×n型][n×p型]=[m×p型](mが行数、pが列数) 積が定義されるためには,左の列数と右の行数が等しくなければなりません。図をよく見て、下の2つの場合を比較して考えて見てください。 貴方がお覚えていた方は内積が定義できる場合です。 UtU=[1×3型][3×1型]=[1×1型] これは内積と同じタイプの積、要素が1つのみでスカラーと同じ。 他方、欠落していたのは UUt=[3×1型][1×3型]=[3×3型] これは結果が3行3列になります。 (今回の質問の場合の行列の積のタイプ)

参考URL:
http://www.geisya.or.jp/~mwm48961/kou2/matrix2.html

その他の回答 (4)

回答No.4

ああ、手が滑りました。 誤 >3行1列に1列3行の行列掛けたら3行3列の行列ですよね。 正 >3行1列に1行3列の行列掛けたら3行3列の行列ですよね。

hwbigin
質問者

お礼

有難うございます。 正に >3行1列に1行3列の行列掛けたら3行3列の行列ですよね。 の部分が理解できません。 何故3行1列に1行3列の行列掛けたら3行3列の行列になるのでしょうか? この部分が理解できていなかったと分かりました。 参考になるサイトとか有りましたら教えて頂きたいです。

hwbigin
質問者

補足

もしかして基礎過ぎて線形代数とかの教科書には載ってないのでしょうか?

回答No.3

3行1列に1列3行の行列掛けたら3行3列の行列ですよね。 3行n列にn列3行 でも同じなので、ux, uy, uz はひょっとすると 列ベクトルかも。 いずれにしても行列の掛け算の基本に戻ってください。

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

U=(ux,uy,uz)t= (ux) (uy) (uz) Ut=(ux,uy,uz) であるから UUt= (ux) (uy)(ux,uy,uz)  ←行列の積の定義に従って要素を計算する (uz) = ( uxux, uxuy, uxuz ) ( uyux, uyuy, uyuz ) ( uzux, uzuy, uzuz ) = ( uxux, uyux, uzux ) ( uxuy, uyuy, uzuy ) ( uxuz, uyuz, uzuz ) となります。 何か、勘違いしてませんか? なお、UtUなら Ut= (ux,uy,uz) U=(ux,uy,uz)t (ux) (uy) (uz) であるから UtU=(ux^2+uy^2+uz^2) ←一行一列の行列なのでスカラーとみなせる。 =ux^2+uy^2+uz^2   ←ベクトルの内積に等しい。

hwbigin
質問者

お礼

大変有難うございます。 自分の解ってなかった所が分かりました。 大変な勘違いをしていたのですね。 因みに下記の部分について参考になるサイトとか有りませんでしょうか? 自分の認識では左の掛けられる側の列数と右の掛ける側の行数が一致していないと計算できないと勘違いしていたようです。 ググッてみたんですが、どうも該当するものが出てこないです。 何卒宜しくお願いいたします。 ------------------------------------------------------------ UUt= (ux) (uy)(ux,uy,uz)  ←行列の積の定義に従って要素を計算する (uz) = ( uxux, uxuy, uxuz ) ( uyux, uyuy, uyuz ) ( uzux, uzuy, uzuz )

  • yyssaa
  • ベストアンサー率50% (747/1465)
回答No.1

U=(ux,uy,uz)t がU=(ux,uy,uz)の誤りか、 UUtがUtUの誤りではありませんか?

関連するQ&A

専門家に質問してみよう