• ベストアンサー
  • すぐに回答を!

相似の問題・・・・

AD//BCの台形ABCDで、線分EFは対角線 の交点を通り、BCに抵平行です。EFの長さを 求めなさい。AD=8cm BC=12cm という問題の答えを教えてください。 お願いします。。

noname#13400
noname#13400

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数257
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • kony0
  • ベストアンサー率36% (175/474)

1つ前の問題とほとんど同じです。 次の問題を解いてください。 ACとBDの交点をPとする。 (1)AP:CPの線分比を求めよ。 (2)EP:BCの線分比を求め、EPの長さを求めよ。 (3)EFの長さを求めよ。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 相似・・・

    台形ABCD AD//BC、BC//EFで 点Eは辺AB上の点 BC//EFになるように辺DCの交点に点Fをとる 辺ACとEFの交点をGとし AD=6 AE=6 EB=4 BC=12 EG=X GF=Y XとYの値を求め、CG:CAを求めろ。 という問題なんですが、 こたえをおしえてください。。 わかりずらくてすいません。。 お願いします。

  • 中学校の参考書で、相似の類似問題が見当たらないので教えてください。m(__)m

    お世話になります。_(._.)_ 以下の問題の解法の導き方を教えて頂きたく、大変お手数ですが、どうぞよろしくお願いします。 自分でやっても、どうしても式解法が思いあたらないものですから。。 『右の図のABCDは長方形です。このときFHの長さは何cmですか』 図が書けないので説明します。ABCDの長方形があり、 ED =12cm、AB =10cm、BC =18cmと数字が問題文に書いてあり、対角線DBを含む直角三角形DBCがあります。FHはBCと直角マークになっています。ABCDの長方形の中に、対角線BDと、ADの中にある交点E点の線分ECがあります。F点はECの中にあり、F点は対角線BDと線分EDの交点なっていてFHはBC の垂線になっています。図で書けば何でもないのですが、うまくパソコンでは書けないのですいません。m(__)m 『解答は4cm』ですが、比率がどうしても思い浮かばないのでよろしくお願いします。_(._.)_

  • 数Aの比の問題

    問.上底の長さがa,下底の長さがbの台形がある。この台形の対角線の交点を通り、底に平行な直線が台形の他の2辺によって切り取られる線分の長さをa,bであらわせ。 【解説(答え)】 AD平行BC,AD=a,BC=bである台形ABCDを考える。 この台形の対角線の交点をEとし、長さを求める線分の両端をX,Yとする。 ここまではわかります。 ですが 「AD平行BCであるから AE:EC=DE:EB=a:b XE平行BCであるから XE:BC=AE:AC=a:(a+b) よって、XE=a/a+b BC=ab/a+b」 この「」内が意味不明です。 どうして、XE=a/a+b BC=ab/a+b なんて数値がでてくるのでしょうか また、 AD平行BCであるから AE:EC=DE:EB=a:b XE平行BCであるから XE:BC=AE:AC=a:(a+b) これが成り立つ定理ってありましたっけ? 回答お願いします。 テスト前なのでできれば早めに・・・。

  • 面積比が分かりません

    画像添付が出来ないので、文章になります。 四角形ABCDは、AD//BCの台形である。 Oは、対角線の交点である。 AD=12cm、BC=20cm、△AOD=36平方cm (1)△AOBの面積は? (2)△BOCの面積は? 文章で分かりにくいと思いますが、答えてください。 そもそもこういった問題はどう解けばいいのでしょうか?

  • 数A 台形の問題

    AD//BCである台形ABCDの対角線の交点Pを通りBCに平行な直接を引き、辺AB,CDとの交点をそれぞれQ,Rとする。AD=12,BC=20のとき、PQ,QRの長さを求めよ。 この問題がわからないので教えてもらいた いです!よろしくお願いします!

  • AD//BC,AD=4,BC=10である

    AD//BC,AD=4,BC=10である 台形ABCDの対角線の交点をOとする △OBCの面積は25であるときの △OABの面積を求めよ。 わかりやすく説明あると嬉しいです!

  • 高校入試数学 相似

    次の問題の考え方、解答を教えてください。 長方形ABCDがあり、点Eは辺BCの延長上の点でBC:CE=2:1である。辺AB上に、点Fをとり、線分EFと対角線BD、辺CDとの交点をそれぞれG,Hとする。 四角形AFGDの面積と△BEGの面積が等しいとき、線分CHの長さは線分HDの長さの何倍か。

  • 教えて下さい!

    教えて下さい! 図のように、AD//BC、AD=3cm、BC=10cmの台形ABCDがある。対角線AC,DBの交点をEとする。また、AC,DBの中点をそれぞれF、Gとし、AGの延長とBCの交点をHとする。 1問  線分BH、GFの長さを求めよ 2問  △AGEの面積をS,△DECの面積をTとするとき、S、Tの比を最も簡単な整数の比で表せ。 求め方も、さっぱりわかりません。

  • 証明

    AD//BCである台形ABCDにおいて、対角線ACとBDの交点Pとする。また、点Pを通り、辺BCに平行な直線lを引き、辺AB、CDとの交点をそれぞれE,Fとする。 このとき、(1/AD)+(1/BC)=(2/EF)を証明する問題で。        A-----------D / \     /         \ /           \      /           \     B-------------------------C どのように考えるか分からないのでこの書き込みは消されてしまうかもしれませんが、よろしくお願いします。 この問題をまず解くには ・AE:EB=AD:BC ・DF:FC=AD:BC を考えるそうですがこの比の作り方(考え方がよくわかりません。) まとめると、 Pはこの図の中心点。 点Pを通るよく線はl ABとDCで交わった直線lをE,Fと置く。

  • 相似.三平方の定理

    図のように.AB=6cm.BC=8cmの長方形ABCDがあり.∠Bの二等分線とCDの延長との交点をEとする また.BEとAC.ADとの交点をそれぞれP.Qとする. このとき.DEとCPの長さをそれぞれ求めてください 解き方の説明もあればうれしいです