• ベストアンサー
  • すぐに回答を!

数学 ラグランジュの乗数を用いた最大最小問題

数学の問題で困っています。 9x^2 +4y^2 =36 のとき、xyの最大値と最小値を求めよ。 この問題をラグランジュの乗数を用いた連立方程式と元の条件式から、 xyの極値の候補が(x,y)=(√2,3/√2),(√2,-3/√2),(-√2,3/√2),(-√2,-3/√2) の4つであることが分かったのですが、ここからどうやって最大、最小を説明するのかがわかりません。 すなわち (1)xyの極値の候補が実際に極値であることをどうやって示すのか (2)極値が最大、最小の値にもなるということをどうやって示すのか 以上の2点で困っています。 詳しい解説お願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

ラグランジュ乗数法は、拘束条件 g=0 を用いて 目的関数 f の極値を f-λg の極値に転嫁する 計算方法です。f の極大値は f-λg の極大値に、 f の極小値は f-λg の極小値になりますから、 普通に、f-λg の極値判定をすればよいです。 臨界点を求めたときに、∇(f-λg) は求めたはず。 もう一階微分して f-λg のヘッセ行列を求め、 それを係数とする二次形式が定符号であるか否か、 各臨界点上で判定しましょう。 臨界点の座標をヘッセ行列に代入して 具体的な数値行列としてから、固有値を求めて、 全部が同符号かどうかを見ればよいです。

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1
  • reiman
  • ベストアンサー率62% (102/163)

ラグランジュを使って求めた点はすべての極値の候補を含んでいるので これ以外に極値は存在しない 9x^2 +4y^2 =36 を満たすのだからx,yはともに有界である よってxyは最大値と最小値を持つ xyが最大になる点及び最小になる点はともに極値であるから 求めた極値候補をxyに代入して最も大きくなる点が最大値点であり 最も小さくなる点が最小値点である (1)の問題はあまり価値が無いので無視

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ラグランジュ乗数法に関して

    f(x,y)=x^3-xy+y^3において、領域D:-1≦x≦1,0≦y≦1 の最大最小値を求めよ。 どう考えるのでしょうか?ラグランジュ乗数法と睨んでるんですが、領域Dをどのように定式化知ればよいのかわからずできません。 ラグランジュ乗数法の理論的なところはわかっているのですが、それ以前の問題なのでわかる方知恵を貸してください。

  • ラグランジュの乗数法を使った条件付極値問題について

    ラグランジュの乗数法を使った条件付極値問題について誰か教えてください。 x^3-6xy+y^3=0のときx^2+y^2の極値を求めよ という問題なのですが、ラグランジュの乗数法で出た式がどうしても解けません。 テストが近いにも関わらずさっぱりお手上げで困っています。 もしどなたか解ける方がいらっしゃったらどうかよろしくお願いします。

  • ラグランジュの乗数法での極値の求め方

    宜しくお願い致します。 [問]ラグランジュの乗数法をを使って、x^2+y^2=1の条件下でf(x,y)=xyの極値を調べよ。 [解] 『定理(ラグランジュの乗数)g(x,y)=0のもとに、f(x,y)の極値を考える。この条件付極値を与える点(a,b)がg(x,y)=0の特異点でなければ(a,b)は連立方程式 g(x,y)=0 ∂/∂x{f(x,y)+λg(x,y)}=0 ∂/∂y{f(x,y)+λg(x,y)}=0 の解の中から得られる。』 そして、 『f(x,y)の特異点とは 「fx∈Rでない または fy∈Rでない」か「fx=fy=0」なる点』 なのでこれを利用するとまず連立方程式は (∂/∂x{f(x,y)+λg(x,y)}=)y+2λx=0…(1) (∂/∂y{f(x,y)+λg(x,y)}=)x+2λy=0…(2) x^2+y^2=1…(3) となり、(1)-(2)から (x-y)(1-2λ)=0 λ=1/2の時はxとyの値が定まらないのでλ≠1/2とすると x=yで(3)よりx=y=±1/√2 (複合同順) しかし、解答には (1/√2,1/√2) (1/√2,-1/√2) (-1/√2,1/√2) (-1/√2,-1/√2) の4つになっています。 何処らへんから間違っているのでしょうか???

  • 大学数学の最大値・最小値の問題です

    大学数学の極値の問題です。 関数f(x,y)=x^2+xy+y^2のD={(x,y) ∈ R^2 | x^2+y^2≤1}における最大値、最小値を求めよ。 という問題です。 ヒントとして「円の内部における極致(2変数関数の極値)と円周上での極値 (条件付き極値)を調べよ。)というのが与えられています。

  • 最大値・最小値問題

    最大値・最小値問題 ラグランジュを使った方法での解き方をお願いします。 (1)条件x^2-2xy+3y^2=6の下でのx^2+2y^2の最大値と最小値を求めよ。 (2)D:x^2-2xy+3y^2≦6におけるe^{-(x^2+2y^2)} の最大値と最小値を求めよ

  • ラグランジュ乗数法のはいりで…。

    ラグランジュ乗数法を学ぼうとしています。まだラグランジュ乗数法の式を使って、問題を解くなどはしてないのですが、その解説の部分で腑に落ちないところがあったので、質問させてください。 その記述は、 g(x,y) = xy - 36 = 0 の条件のもとで、 f(x,y) = 2x + 3y の極値を求めることを考える。求める極点をxy平面上に落とした点をAとし、極点そのものをBとする。これは等高線g上を動く点がAを通過する瞬間、その上空では z = f(x,y) = 2x + 3y 内の曲線が谷底あるいは山頂になっていることを意味している。動点Bは等高線g上を動いているので、全微分方程式 dz = gxdx + gydy において、 dz = 0 である。 とあるのですが、なぜ動点Bは等高線上を動くのでしょうか?動点Bはxy平面上の双曲線に沿って動く(xy平面を上から見下ろした時に、双曲線に沿って動く)と思うのですが、点自体は f(x,y) = 2x + 3y 上にあるので、等高線上は動かないと思うのですが…。 よろしくお願いします。

  • 数学の問題です。

    数学の問題で 「実数x,yが x^2-2xy+2y^2=2 を満たすとき、xのとりうる値の最大値と最小値を求めよ」 という問題です。 解答では式を変形して2y^2-2xy+x^2-2=0 とし、yの2次方程式としてから、その判別式をDとして D/4≧0より  -2≦x≦-2  よって最大値2 最小値-2 となっていました。 このときなぜD≧0と言えるかが良く分かりません。D≦0やD<0となることは無いのでしょうか? 解説をお願いします。

  • ラグランジュの乗数法の問題なんですが…

    「φ(x, y, z) = 2x^2 + y^2 + z^2 - 3 = 0 の下で、f(x, y, z) = xyz の最大値、最小値を求めよ」という問題なんですが、途中からわからなくなってしまって…。 S':φ=0は有界閉集合だからf(x,y,z)はS'上で最大値、最小値をとる。 (x0,y0,z0)で極値を取るとすると、S'上でgradφ(4x,2y,2z)≠0、 ラグランジュ乗数法より∃λ0 s.t. gradf(x0, y0, z0) = λ0gradφ(x0, y0, z0)、 すなわち(y0z0, x0z0, x0y0) = λ0(4x0, 2y0, 2z0) ここまで色々参考にやってみたのですが、あってるのかもわからずこれからどうすればいいのかもわからなくなってしまいましたorz 解法、もしくはヒントなどよろしくお願いします。

  • ラグランジュの方法

    ラグランジュの方法 以下の問題について相談です。 x^2+xy+y^2=1の条件下でのxy/1+x^2+y^2の最大値、最小値およびそれらを与える(x,y)をすべて求めよ。 ラグランジュの方法を用いました。 ψ(x,y)=x^2+xy+y^2-1=0とおき、xとyについて偏微分して、ψx(x,y)=ψy(x,y)=ψ(x,y)=0を満たす点は存在しないことを確認しました。 次にF(x,y,λ)=xy/1+x^2+y^2-λ(x^2+xy+y^2-1)とおき、xとyとλについて偏微分して、連立方程式を解いて答えを出そうとしています。 私の解答では(1.1)のとき最大値2、(1.-1)で最小値-2になったのですが、大変自信がありません。 まず、やり方はあっているのでしょうか? どなたか途中式も交えて答えをご回答下さると大変嬉しいです。 お願い致します。

  • ラグランジュの未定乗数法!!

    x^2+y^2+z^2=1 である時、 1、関数x-y-zの最大値 2、関数x-y-zの最小値 をラグランジュの未定乗数法で求めよ。 以上の回答、解説どなたかお分かりになりませんでしょうか??? よろしくおねがいいたします!!!