• ベストアンサー
  • すぐに回答を!

極限値

第n項が次式で与えられる数列の極限値を求めよ。1/n^3{1・2+2・3+・・・+n(n+1)} いろいろ調べてみたのですがわからないので教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数44
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info22_
  • ベストアンサー率67% (2650/3922)

#1です。 A#1の補足の質問について >=(1/2)n(n+1)+(1/6)n(n+1)(2n+1)=(1/3)n(n+1)(n+2) >この行は,一度展開して求めるのですか? 共通の(1/6)n(n+1)をくくり出しただけです。 すると、2n+4=2(n+2)が出てくるので、2で約分すれば最後の式になります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 極限値を求めたいのですが、教えてください

    次のような極限値を求める問題ですが、次の数列の収束・発散を調べ、収束する場合にはその極限値を求めよという問題です。   (1)lim(n→∞)  1+(-1)^n   (2)lim(n→∞)  √(n^2 +1) - √(n^2 -1)

  • 極限値は存在するか?

    初項a(1)=iで、 a(n)={a(n-1)}^i で表される数列を考えたとき、この数列の極限値は1に収束するか? (i=√(-1)) という問題の解答と理由を教えていただきたいのです。

  • 極限値が存在するか?

    初項a(1)=iで、 a(n)=i^{a(n-1)} で表される数列を考えたとき、この数列の極限値は1に収束するか? (i=√(-1)) という問題の解答と理由を教えていただきたいのです。

その他の回答 (1)

  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

{1・2+2・3+・・・+n(n+1)}=Σ[k=1,n] k(k+1)=Σ[k=1,n] k+Σ[k=1,n] k^2 =(1/2)n(n+1)+(1/6)n(n+1)(2n+1)=(1/3)n(n+1)(n+2) lim[n→∞] (1/n^3){1・2+2・3+・・・+n(n+1)} =lim[n→∞] (1/n^3)(1/3)n(n+1)(n+2) =(1/3)lim[n→∞] (1+(1/n))(1+(2/n)) =1/3

共感・感謝の気持ちを伝えよう!

質問者からの補足

ありがとうございます。 =(1/2)n(n+1)+(1/6)n(n+1)(2n+1)=(1/3)n(n+1)(n+2) この行は,一度展開して求めるのですか? すいません。教えてください。

関連するQ&A

  • 極限値の求め方、教えて下さい。

    数列 a(n) = n*p^n (p<1)の極限値(x->∞)と、その求め方を教えて下さい。 よろしくお願いします。

  • 極限値

    極限値を求めよ。 lim n→∞ 5n-3/n^2+2n+3 答えは0であっていますか?

  • 極限値

    (1)an=1/(1・2)+1/(2・3)+・・・・・・+1/n・(n+1) (2)an=n^2/(1+2+3+・・・・・・+n) (3)an=(1-1/n)^n という数列の極限値の求め方がわかりません。 お分かりになる方よろしくお願いします。

  • 極限値

    (1) lim[n→∞]√(x+3)-√(x)/√(x+2)-√(x+1) 分子有理化をして、 分子分母に√(x+3)-√(x)をかけて、 lim[n→∞] 3 /{√(x+2)-√(x+1)}{√(x+3)-√(x)} さらに分子分母をxで割りました。 3/∞になって0になります。 しかし、解答は3です。 (2) 数列{a_n}の極限値を求める。 a_n=1^2+2^2+…+n^2/n^3 こちらは全く分かりません。 分子分母をn^2で割りましたが、 なにも進みません…。 なにかヒントをお願いします。

  • 極限値は存在しますか?

    0 1/3 2/3 1 ---------------------------------- 真ん中の1/3を削除する。 S=1/3+1/3になる。 それぞれの真ん中の1/3を削除する。 S=1/9+1/9+1/9+1/9になる。 以下 このような数列は極限値を持ちますか持ちませんか? あるとしたらどんな極限値でしょうか?

  • 極限値,詳しく教えて下さい。

    a_1=1,a_n+1=√(2a_n+3)(n=2,3,…)として決まる数列{a_n}に対し,lim_(n→∞)(a_n)が存在することを示し,その極限値を求めよ。 途中の過程もできるだけ詳しく教えて下さい。 他の問題もできるようになりたいので,解説もお願いします。

  • 極限値の問題です

    以下の極限値を求める計算をしたのですが、 あっているか自信がありません。 詳しい方がいらっしゃいましたら、ご指導お願いします。 【問題】 一般項anが、次で与えられる数列{an}について、個々の収束・発散を調べ、収束する場合にはその極値を求めよ。 (1) 2^n (答)lim[n→∞] 2^n = ∞より、発散する。 (2) (2n^2+1)/(n^2+3) (答)lim[n→∞] (2n^2+1)/(n^2+3) =lim[n→∞] {2(n^2+3)-5}/(n^2+3) =lim[n→∞] { 2(n^2+3)/(n^2+3) - 5/(n^2+3) } =lim[n→∞] { 2 - 5/(n^2+3) } より、2に収束する。 (3) √(n+1)-√n (答)lim[n→∞] √(n+1)-√n =lim[n→∞] {(√(n+1)-√n)(√(n+1)+√n)}/(√(n+1)-√n) =lim[n→∞] (n+1-n)/(√(n+1)-√n) =lim[n→∞] 1/(√(n+1)-√n) また、lim[n→∞] 1/n = 0より、 √(n+1)-√nは、0に収束する。 以上、よろしくお願いします。

  • 数列の極限値

    数列の極限値を求める問題で分からないものがあります。 1)an=1/(1・2)+1/(2・3)+・・・・・・+1/n・(n+1) 2)an=n^2/(1+2+・・・・・・+n) 極限をとる前の式の変形の仕方がわかりません。 詳しく教えていただけると助かります。

  • 極限値について

    数列{a_n}を a_1=t、a_(n+1)=t^(a_n)で定義します。 この極限値は、0<t<1/e^eのとき振動、1/e^e≦t≦e^(1/e)のとき収束、e^(1/e)<tのとき+∞に発散するらしいです。 1≦t≦e^(1/e)のときはa_nは上に有界な増加関数、e^(1/e)<tのときはy=xとy=e^xのグラフによって証明できるのですが、0<t<1のときがどう証明すればいいかわかりません。ヒントだけでも教えてもらえませんか?

  • 極限値を求める問題です。

    次の極限値を求めよ。 lim(x,y)→(1,1) (x-1)^3+(y-1)^3/(x-1)^2+(y-1)^2 (x-1)^3+(y-1)^3が分子で (x-1)^2+(y-1)^2が分母です。 よろしくお願いします。