• ベストアンサー
  • すぐに回答を!

図形で一問分からないところがあります。

三角形ABCの頂点A、B、Cから直線BC、CA、ABに下ろした垂線の長さを順にx、y、zとおくと、x:y:z=10:5:4が成り立つ。 このとき、AB:BC:CAの比率を求めよ。 また角A、B、Cの大きさをそれぞれ、a、b、cとおくと、sina:sinb:sincの比率を求めよ。 三頂点からそれぞれに下ろした垂線に関する公式はあるのでしょうか。 それぞれの垂直2等分線の交わる点が外接円の中心だとは、昨日教えていただきましたが。 よろしくお願いします。

noname#13536
noname#13536

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数90
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

ヒントだけですが。 この問題は、図形を描いて、Sinの意味をそのまま考えてみればわかります。 例えば、角Cに注目すると、sinCは、x/ACと y/BCの2つあらわされます。 この2つは当然等しく、x:yはわかっているので、 必然的にAC:BCもわかります。 これを全ての角で行えば、3辺の比率はわかります。 それがわかれば、sina:sinb:sincは正弦定理ですね。

共感・感謝の気持ちを伝えよう!

その他の回答 (2)

  • 回答No.3

皆さんが書いてあるとおりです。 三角形の面積は一定なので、次の式が成り立ちます。 x*AC=y*AB=z*BC ここから、 AB:BC:CA=4:5:2 之が求まればsinの値はsinの定義式より求まります。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • kony0
  • ベストアンサー率36% (175/474)

ずばり「逆比」。根拠は、面積・・・

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 図形についての問題を教えてください。

    三角形ABCがあり、AB=5、BC=6、cosA=1/8である。 (1)sinAの値を求めてください。また、三角形ABCの外接円の半径を求めてください。 (2)辺ACの長さを求めてください。 (3)辺Aから直線BCに垂線を引き、交点をHとするとき、線分AHの長さを求めてください。 また、三角形ABCの外接円の中心をO,直線AOと直線BCの交点をDとするとき。OD/ADの値を求める問題を解いてみると、 (1)sin(二乗)A+cos(二乗)A=1より sin(二乗)A=1-(1/8)(二乗) =1-1/64 =63/64  sinA>0より    sinA=3√7/8 外接円の半径をRとする、     2R=a/sinA 2R=6/3√7/8 R=6÷(2×3√7/8) =6÷6√7/8 =8/√7      =8√7/7 (2)余弦定理より  AC(二乗)=BC(二乗)+AB(二乗)-2×BC×AB×cosA =6(二乗)+5(二乗)-2×6×5×1/8 =36+25-30      =4   AC>0より     AC=2まではなんとかできたのですが、ここから解らないので教えてもらえませんか?  途中式も含めてわかりやすく教えてください。

  • 三角関数で分からない問題があります。お願いします。

    三角形ABCにおいてsinA/6=sinB/5=sinC/4が成り立つことから以下の問題に答えなさい。 (1)cosA、sinAをの値を求めなさい。 (2)三角形ABCに内接する円の半径が1のとき、ABの長さ、三角形ABCの面積、三角形ABCの外接円の半径を求めなさい。 正弦定理を使うことはわかりますが、どう使えばよいのか分かりません。お願いします。

  • 数学 三角比

    三角形ABCにおいて、頂点Aから直線BCに垂直におろした垂線の長さは1、頂点Bから直線CAに下した垂線の長さは√2、頂点Cから直線ABに下した垂線の長さは2である。このとき、三角形ABCの面積と、内接円の半径、および外接円の半径を求めよ。

  • 図形(高1レベル)お願いします。

    半径7/√3の円に内接する三角形ABC、AB=5 BC=X CA=X+1 のとき (1)「sinC」 (2)「X」 (3)頂点A、B、Cから対辺BC,CA、ABに引いた垂線と各辺の交点をD、E、Fとする。 このときの三角形DEFの面積」 なぜかしら、不思議な数字が出てくるのは気のせい? よろしくお願いします。

  • 図形の問題です。

       三角形ABCにおいて、角CABの二等分線がBCと交わる点をD 直線ADが三角形ABCの外接円と交わる点をPとする。 BC=14、CA=6、AB=10とする AD、BP、APの長さを求めよ ADの答えが二つでてしまいました

  • 【問題】三角形ABCにおいて,(sinA)/6=(sinB)/5=(s

    【問題】三角形ABCにおいて,(sinA)/6=(sinB)/5=(sinC)/4が成り立っている。 (1)cosA,sinAの値を求めよ。 (2)三角形ABCの内接円の半径が1であるとき,ABの長さ,三角形ABCの面積を求めよ。 (1)はsinA:sinB:sinC=a:b:cを使ってcosA=1/8,sinA=3√7/8と求めました。 (2)が全然わかりません^^; どなたかよろしくお願いします。

  • 数学IA

    三角形ABCにおいてBC=2,CA=3, cosBCA=1/4とする。 このときAB<√10,sinBCA=√15/4である。 また三角形ABCの面積は3√15/4であり、三角形ABCの外接円の半径は2√6/3である。 次に点Dを三角形ABCの外接円の点Bを含まない弧CA上に,線分BDが三角形ABCの外接円の直径となるようにとる。このときCD=2√15/3である。 さらに、空間内で四角形ABCDを直線CAを折り目として、三角形ACDを三角形ABCと垂直になるように折る。 折った後の点Dを点Eと呼ぶことにすると、四面体EABCの体積は5/8になるのですが 体積の求め方がわかりません 詳しい解説をお願いします

  • 三角比の問題。途中式を教えてください

    三角比の問題。解答に途中式が載ってなく解き方がわかりません。途中式を教えてください。 △ABCにおいてsin∠A/√5=∠sinB/√2=sinCのとき (1)3辺の長さの比AB:BC:CAと最大角の大きさを求めなさい。 答えAB:BC:CA=1:√5:√2、 ∠A=135° (2)△ABCの外接円の半径が2の時、△ABCの面積を求めなさい。 答え4/5 よろしくお願いします。

  • 三角形ABC

    三角形ABCにおいてAB=t+3、AC=t+2、cosA=3/4を満たす。ただしt>0とする。このときsinA=√ア/イである。また三角形ABCの外接円の半径が8√7/7のときBC=ウ、t=エである。 sinA=√7/4、BC=4までできました。 tの解き方・解答を教えてください。

  • 図形と方程式の問題です。教えて下さい!

    三角形ABCがあり、AB=8、AC=5、∠A=60°である。 3つの辺BC,CA,ABとそれぞれ点D,E,Fで接する円の中心をIとする。 線分AEの長さを求めよ。また三角形ABCの外接円の中心Oとする。 線分OIの長さを求めよ。 IEの長さは分かったのですが、このあとのAEとOIの長さの求め方 が分かりません。教えて下さい。