• ベストアンサー
  • すぐに回答を!

急ぎでお願いします、数IIです

閲覧ありがとうございます。 以下の問題の解答(解き方だけでもありがたいです)をお願いします。 関数 f(x)=x^3-27a^2x+16について f'(x)=< >x^2-27a^2であるから、 a=< >のとき、f(x)は単調に増加する。 このとき、方程式f(x)=0の異なる実数解は< >個である。 以上です。 ちなみに<>内の答えは順に 3、0、1、となっています。 解答よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数65
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • fjnobu
  • ベストアンサー率20% (487/2323)

最初の3は、与式を微分したから3 2番目は、与式に戻って考えると0であれば単調に増加する。 3番目は、a=0として与式を解けば実数解はいくつか分かりますね。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 急ぎでお願いします、微分の問題です

    閲覧ありがとうございます。 以下の問題の解答(解き方だけでもありがたいです)をお願いします。 関数 f(x)=x^3-27a^2x+16についてa>0とする。 f(x)は x=<ア>a のとき極大値<イ>a^3+<ウ>、     x=<エ>a のとき極小値<オ>a^3+<カ>をとる。 したがって、方程式f(x)=0が異なる実数解を2個もつとき、 a=<キ>である。 以上です。 <>内の正答は ア:-3 イ:54 ウ:16 エ:3 オ:-54 カ:16 キ:2/3 です。 解答よろしくお願いします。

  • 実数解の個数

    関数f(x)=x^3-27a^2x+16について f(x)が単調に増加するときのaの値、方程式f(x)=0の異なる実数解の個数、f(x)の極大値と極小値、f(x)=0が異なる実数解を2個もつときのaの値 を求めよ。 という問題なんですが、微分した時点で止まってます。 実数解の個数を求めるには、y=f(x)のグラフとx軸の共有点のx座標を求めればいいと思うのですが、何から始めればいいかわかりません。 順をおって説明していただけませんか?お願いします。

  • 微分の問題

    微分の問題なのですが aを定数として、関数f(x)=2x^3-3ax^2+6(a-1)x+a-4とすると (1)f(x)が極値をもつのはaがどのような条件の時ですか? (2)xについての方程式f(x)=0が異なる3個の実数解を持つのは    aがどのような条件のときですか? ちなみに(1)の答えが aキ2になるのですが 私は判別式を使って解いたのですが aキ2はでてきませんでした。 (2)は解答ではa<0,4<aです。 教えて下さい。お願いします。

その他の回答 (1)

  • 回答No.2

f´(x)=3(x^2-9a^2)。単調増加であるためには、f´(x)≧0. f´(x)=0において、x^2の係数>0より判別式≦0であると良い。→ a^2≦0 aは実数からa^2≧0 → a=0.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 高次方程式(大学受験の数学)の問題です。ご解答お願いします。

    高次方程式(大学受験の数学)の問題です。ご解答お願いします。 高次方程式(大学受験の数学)の問題ですが、(1)以外、全く分かりません。 チャート等で調べてもみましたが、似たような問題がありませんでした。 よろしければ、どなたか、教えていただければ幸いです。 [問題] f(X)=X3&#65293;X2&#65293;4X&#65293;1とおく。 (1) 方程式f(X)=0の正の実数解と負の実数解はそれぞれいくつあるか答えよ。 (2) 方程式f(X)=0の全ての実数解aに対して    f(x)=(X&#65293;a){X2+g(a)X+h(a)}が成り立つような、2次以下の整式g(t)とh(t)を求めよ。 (3) aを方程式f(X)=0の実数解とするとき、    a2&#65293;2a&#65293;2と&#65293;a2+a+3もまた方程式f(x)=0の解であることを示せ。 (4) aを方程式f(x)=0の最大の実数解とするとき、a2&#65293;2a&#65293;2と&#65293;a2+a+3の符号はそれぞれ正、負のどちらであるか、理由も含めて答えよ。 [解答] (1) 正の実数解は1個、負の実数解は2個 (2) g(t)=t&#65293;1、h(t)=t2&#65293;t&#65293;4 (3) 略 (4) ともに負、理由略 X2, X3, a2, t2の数字は指数を表しています。ワードで表示されたものが、この画面では正しく表示されませんでした。ご容赦いただきたいと思います。   よろしくお願いします。

  • 関数の連続の問題

    次の方程式の実数解は、どんな連続2整数の間にあるか? (1)X^3 + X^2 - 2x - 1 = 0 (2)2x^3 - x^2 - 4x + 2 = 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (1) ともに式をf(x)とおいて、 f(-2)<0 、 f(-1)>0 、 f(0)<0 、 f(1)<0 、 f(2)>0 より 解は-2と-1、-1と0、1と2の間にあることはわかるんですが、 f(x) のxに代入する整数を一体どうやって決めるのでしょうか? 例えば、答えは「10000と10001の間」かもしれないじゃないですか。 適当に当てはめていたら答えを出すのに何時間かかるかワカラナイじゃないですか。 (2)の場合も同様です。ちなみに解答は -2と-1、0と1、1の2 の間です。

  • 数学 微分

    関数f(x)=2x+1/x^2について (1)f(x)を微分せよ (2)f(x)の増減を調べ、極値を求めよ。 (3)tの方程式asin^2t-2sint+2a-1=0か実数解をもつような実数aの値の範囲を求めよ。 解き方教えてください。

  • 高校数学の問題です。

    以下の問題の(2)(3)について教えてください。 実数全体を定義域とする関数 f(x) = 2^3x &#65293;9・2^2x+1 +15・2^x+2 について、 次の問いに答えよ。 ※「2の3x乗」、「-9・2の2x+1乗」、「+15・2のx+2乗」 (1) 2^x = t とおく。関数 f(x) を t で表し、得られた t の関数を g(t) とおく。   関数 g(t) の増減と極値を調べ、 y = g(t) のグラフをかけ。   ただし、g(t) の定義域は、x が実数全体を動くときに t が動く範囲とする。   =>これはできました。 (2) 方程式 f(x) = k が異なる正の解2個と負の解1個をもつような実数の定数 k の値の範囲を求めよ。 (3) k が(2)で求めた範囲を動くとき、方程式 f(x) = k の3個の解の和のとり得る   値の範囲を求めよ。

  • 数II 積分の問題です

    f(x)=x^2ー4x+5とする。aを実数とし、a≦x≦a+1での関数f(x)の最小値をm(a)とする。 (1)m(a)をaで表せ。 (2)放物線C:y=f(x)と3直線x=a、x=a+1、y=m(a)ー1で囲まれた部分の面積をS(a)とする。aがすべての実数を動くとき、S(a)の最小値を求めよ。 (1)はわかったのですが、(2)の解き方がわかりません。ちなみに解答はa=3/2のとき最小値13/12です。どなたか教えてください。宜しくお願いします。

  • 北大の2次試験の問題です。

    kを実数とし、関数f(x)をf(x)=√3sin2x-cos2x+k(√3sinx+cosx)とする。 (1)t=√3sinx+cosxとおくとき、f(x)をtの二次式で表せ。 (2)k=-1/√3のとき、0<x<πの範囲で方程式f(x)=0の解を求めよ。 (3)0<x<πの範囲で方程式f(x)=0は任意の実数kに対して解をもつことを示せ。 全くわかりません。 どなたかわかりやすく教えてくださいっ

  • 至急!!数学の問題です。

    kを正の定数として、実数xの関数 f(x)=kx^2-2kx-3k+2x+3 を考える。 【1】y=f(x)のグラフの頂点の座標を(a,b)としたとき、a,bの値を求めよ。 【2】bの式をk倍し&#160;た式を、kの2仕次方程式とみなして、この2次方程式が正の実数解kをもつ条件を求めることにより、bの最大値は[ア]であることがわかる。bがこの最大値になるとき k=[イ]、a=-[ウ]である。 【1】【2】の解き方、及び【1】の解答、【2】の[ア][イ][ウ]に当てはまる解答を教えてください。 [ア]は一桁、[イ]は分数、[ウ]は一桁です。 長いですがどうか回答よろしくお願い致します。

  • 有界数列

    f(x)は実数値関数とし、正定数0<r<1がとれて、任意の実数x,yに対し、条件 |f(x)-f(y)| _< r|x-y| …(1) が成立するときxに関する方程式 f(x)=x …(2) がただ1つの実数解をもつことを以下の手順で示せ (1) f(x)=x,f(x')=x'であることを示して下さい、これは方程式方程式(2)が実数解をもてば、ただ1つである事を意味する。 (2) x[0]を実定数とし、数列{ x[n] }を漸化式x[n+1]=f(x[n])で定めると、x[n]はコーシー列である事を示して下さい。 (3) (2)の解をもつことを証明してください。 ーーーーーーーーーーーーーーーーーー もしこの問題に解答できる方がいらっしゃいましたらお願いします。

  • 三角関数の問題について

    「a,cを実数とし、関数f(x)=√3sinx+2cos&#178;x/2, g (x)=x&#178;-2ax+1を考える。また、方程式 f(x)=cが0≦x≦πで異なる2つの解をもつようなcの値の範囲を求めよ。また、方程式 g(f (x))=0が0≦x≦πで異なる3つの解をもつようなaの値の範囲を求めよ。」 この問題の解答(解き方)が分からなくて困っています。是非教えてください。よろしくお願いします。 ちなみにこの問題は2011年度の南山大学の入試問題です。

  • 数学の質問

    f(x)=2x^3-(3a-1)x^2-2ax (a≠0) (1)y=f(x)が単調増加関数であるための条件をもとめよ。 (2)y=0が異なる三つの実数解をもつための条件をもとめよ。 (3)y=0がちょうど二つの実数解ををも つとき、y=f(x)とx軸とで囲まれた部分の面積Sをもとめよ。 お願いします(>_<)