• ベストアンサー
  • 困ってます

ベクトル解析・外積につて

数学の問題について教えて下さい。 A=A(t)を空間上の一変数ベクトル関数とする。 このとき、 A X (dA/dt)=0ならば、A/|A| は定ベクトルであること を示せ。 (Xは外積です。またAと0はベクトルで|A|は絶対値Aベクトルです) この関係から、A と (dA/dt)が平行だということは分かるのですが、 証明には至りません。 どうか回答よろしくお願いしますm(__)m

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数783
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

何かほかに条件ありませんか。 Cを定ベクトル、f(t)を実数値をとる関数とします。 A=f(t)*C とおくと A×(dA/dt)=f(t)C×(df(t)/dt)C=f(t)(df(t)/dt)C×C=0 となりますが、 A/|A|は f(t)>0のとき、A/|A|=f(t)C/|f(t)C|=f(t)C/(f(t)|C|)=C/|C| f(t)<0のとき、A/|A|=f(t)C/|f(t)C|=f(t)C/(-f(t)|C|)=-C/|C| となります。 何か条件が足りないような。。。 私の勘違いかな?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 考え方が、解法がとてもわかりやすいです。 申し訳ありませんが、条件はこれだけなんです。 回答本当にありがとうございました。

関連するQ&A

  • 外積の微分

    dA    dAx     dAy     dAz ――=――― i+ ――― j+ ――― k  dt     dt      dt       dt ベクトルAの積分がこうなる事を証明しなさい。 お願いします。大至急教えてください。 A、i、j、kはベクトル記号付いてないけどベクトルです。 ―――は分数の棒を表現したつもりです。 お願いします。

  • ベクトル(外積)の微分の証明

    ベクトル微分があまりにもわかっていないので、誰か助けてください。 内積の微分はなんとなく理解できるんですが、外積の微分となると内積との違いがよくわかりません。成分ごとの説明で、正しく証明できているのでしょうか? また、rがベクトルの場合、 d/dt(r*(dr/dt))=r*(d^2r/dt^2) は、どのように証明が出来るのでしょうか? 感覚的には理解できるのですが、イイ説明方法が出来る方、よろしくお願いします。

  • 外積A×Bの単位ベクトル

    外積A×Bの単位ベクトル 大学一年で力学の講義を受けているのですが、数学の基礎ということでベクトルをやっています。そこで演習としてベクトルの外積の問題が出されたのですが分からなかったことがあったので質問します。以下が出された演習問題です。 2つのベクトルA=i+2j+√3k,B=-2i-j+√3k が直交座標系Oxyzで表わされている。ここで直交座標系Oxyzの基本ベクトルをi,j,kとする。外積A×Bの単位ベクトルを求めよ。 自分の考えでは外積A×Bの単位ベクトルということはおそらくA×B/|A×B|で求められると思うのですが|A×B|はどうやって求めるのでしょうか?自分が知っているのは|A×B|=|A||B|sinθしかないため、どう求めるかわからないのでどうか解法を教えていただきたく思います。 見づらい記述とは思いますがよろしくお願いいたします。 ちなみに一応√はルート、||は絶対値のつもりで書いています。

その他の回答 (2)

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「A と (dA/dt)が平行」から成分に持ち込めばできそう.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 成分で考えてみます。

  • 回答No.1

A/|A| が定ベクトル⇔Aの向きが変化しない⇔(dA/dt)とAが平行⇒外積は0

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。

関連するQ&A

  • 大学のベクトル解析の問題です。

    大学のベクトル解析の問題です。 次の公式を証明せよ。ただし、f、g:スカラー関数、 v:ベクトル関数とする。 1.div(fv) = (gradf)・v + fdiv(v) 2.rot(fv) = (gradf)×v + frot(v) 証明はdivやgrad、rotの定義に基づいて行うこと。 という問題です。 わかる方、回答お願いします。 片方でもわかれば、両方解けると思うんですが、 内積や外積の法則がよくわかってないのか、うまくできません。 よろしくお願いします!

  • 外積についての問題がわかりません><

    外積の問題なのですが解法がわかりません。 解法と解説よろしくおねがいします>< 座標空間においてA(2、-1,3)をとおり二つのベクトル、 b=(5、1,ー4)、c=(0,8,7)に直交する 直線の方程式を求めよ。 よろしくおねがいしますm(__)m

  • ベクトル解析で分からない問題だらけで困っています(

    ベクトル解析で分からない問題だらけで困っています(~_~;) 1. A↑=A↑(t)とB↑=B(t)↑でA↑とB↑が平行で、かつdA↑/dtとB↑が平行であるならばA↑とdB↑/dtも平行であることを示せ。 (略解) A↑×B↑=0の両辺をtで微分せよ。 2. 曲線R1=costi+sintj+3t^2k(t>0)の接線とR2=θj+θ^2kの接線の方向が一致するとき、tとθの値を求めよ。 (i.j.kは基本ベクトル) 答え t=nπ、θ=(-1)^n ×3nπ nは正の整数 3.サイクロイド曲線R(θ)=a(θ-sinθ)i +a(1-cosθ)jの(0<θ<2p)のとき、曲線の長さsをθの関数として表せ。 またこの曲線の単位接戦ベクトルt↑と主法線ベクトルn↑を求めよ。 答え n↑=cosθ/2 i -sinθ/2 j (単位接線ベクトルの解答はありませんでした) の3問です。 できれば詳しい解答を望みますが、解くための考え方などを教えていただけるのもとてもありがたいのでよろしくお願いしますm(_ _)m

  • 外積の計算がわかりません。

     以下はレポートの課題です。煩雑になるためベクトル→は省略していまあす。  以下の方針で空間曲線の曲率中心、曲率半径、曲率を求めよ。小数、帯分数、近似値は用いないこと。 [A].三次元空間内の2点a,bと原点の三点を頂点とする三角形の外心pをベクトルa、bと内積・外積×などを用いてp=a×b×(aとbの式)の形で表せ。(ヒント:ベクトルpがベクトルa、bのい張る平面に含まれることから、p=αa+βbと表し、点pがa、b、原点の3点から等距離にあることを用いて、α、βを求める) [B][A]の答えを用いて空間曲線x(t)の曲率中心を求めよ。(ヒント: 三点 x(t)                                      ・     δ^2‥ x(t+δ)≒x(t)+ δx(t)+ ―――x(t)                     2               ・     ε^2‥ x(t+ε)≒x(t)+ εx(t)+ ―――x(t)                     2 これを頂点とする三角形の外心を求め、δ、ε→0とすればよい。) [C][B]を利用して空間曲線x(t)の曲率半径と曲率を求めよ 以上の問題です。[A]は、        |b|^2 a-|a|^2 b p=a×b×――――――――         2|a×b|^2 が答えであり、[B][C]も (曲率中心)=x(t)+lim[δ→0,ε→0]p (曲率半径)=lim[δ→0,ε→0]|p| (曲率)=lim[δ→0,ε→0]1/|p| というところまではわかっています。しかし、外積の計算がよくわかっていないためか、 lim[δ→0,ε→0]p=0 となります。これでは半径0の円となり、曲率は∞となってしまいます。これでは題意を満たしていないような気がしますし、私の計算方法に何か間違いがあると考えているのですが、それすらもよく分からなくなっています。  外積の計算方法をご教授いただけませんでしょうか。よろしくお願いします。

  • 外積を使って四面体の体積を求める

    空間上の4点が与えられている時、外積を使ってその4点を頂点とする四面体の体積を求めるにはどうしたらいいのでしょうか?? 教えてください。 教科書には4つのベクトルをp,q,r,s,とすると求める体積は 1/6|det(q-p,r-p,s-p)|で与えられるとしか書いてなくて,どうしてこうなるのかわかりませんでした。

  • 外積は必要?

    ベクトルの参考書を使っているんですが 外積(応用)が最後のほうにあり、これを使うと計算が楽になる。 と書いてありましたが、必要ないですよね? 私立の文型で関関同立レベルを志望しているのですが 回答お願いします。

  • ベクトル 外積について

    ベクトル 外積について 2つのベクトルをA,Bと表し、2つのベクトルのなす角をθとします。 また、A=(ax,ay,az),B=(bx,by,bz)です。 外積 A×B=(aybz-azby,azbx-axbz,axby-aybx)ですがこれは、 A×B=(aybz-byaz,azbx-bzax,axby-bxay)と書いても同じでしょうか? また、内積は2・3次元、外積は3次元のイメージなのですが、4次元等にも拡張して 考えられるものなのでしょうか? ご回答よろしくお願い致します。

  • ベクトルの外積 軸性ベクトルについて

    私は理系の大学に通っている3回生です。 いま連続体力学という授業のなかで、ベクトルを勉強しています。 授業のなかで ベクトルの外積A×Bは軸性ベクトルであることを証明せよ。 という証明問題がでたのですが、どうしてもわかりません。 どなたかわかる方 解説お願いします。

  • ベクトルの外積の定義について質問

    ベクトルの外積を求める際、ベクトルの要素から計算する方の外積の計算がなぜ成立するのか意味がわかりません。sinが出てくるほうの式はわかります。 とりあえず、行列が関係しているらしいので一行二列のベクトルをかけるとそうなるんだと思っているのですが、行列が苦手なのでいつも恐る恐る使っています。

  • 大学の記述入試で外積は使えますか?

    四面体の4頂点の座標が定められていて、高さや体積を求める問題を今日塾でやってきました。 そこで先生がベクトルの外積を用いて解いていて、 「外積で答えるのが不安なら普通にやればよいが、試験で外積を使っても絶対にバツにはならない」 と言い切っていたのですが、本当に大丈夫でしょうか? ロピタルの定理なんかは証明しなければ危険らしいですが、外積はどうなんでしょう?先生が自信満々で使えると言っていたので、気になりました。