• ベストアンサー
  • すぐに回答を!

三角形の辺の比

学校で答えが教えてもらえなかったので質問します。 ΔABCにおいて∠Aの二等分線と辺BCの交点をDとする。 この時AB:AC=BD:BCであることを証明せよ。 という問題です。どなたか回答お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数84
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#147892
noname#147892

CからADに平行な直線を引き、BAの延長線との交点をEとする。 ADとECが平行より、∠AEC=∠BAD(同位角)、∠ACE=∠DAC(錯角)。 ∠BAD=∠DACより、∠AEC=∠ACE。 よって、△ACEは二等辺三角形、AE=AC。 ADとECが平行より、AB:AE=BD:DC、 AE=ACだから、AB:AC=BD:DC。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。すっきりしました。 来週から期末なので頑張ります

関連するQ&A

  • 三角形の辺

    AC=9,BC=6,CA==5の△ABCにおいて、∠Aの外角の二等分線と直線BCをCの方向に延長したものとの交点をDとし、∠Bの二等分線とADとの交点をF,ACとの交点をEとする。 このとき,線分ECとCDの長さ、“AE/FD”の値を求めなさい。 という問題で (ⅰ)AB:BC=AE:EC EC=2 (ⅱ)AB:AC=BD:CD 30=4CD CD=15/2 というところまでは解けたのですが、“AE/FD”がどうしても解けません。助けてください!!

  • 2角の二等分線の長さが等しい三角形は二等辺三角形

    △ABCにおいて∠Bの二等分線と辺CAとの交点をD、∠Cの二等分線と辺ABとの交点をEとするとき、線分BDと線分CEの長さが等しければAB=ACとなる。 この証明を教えて下さい。 参考書には少し難しいけど考えてみてとだけあって解説がなかったので。 BA:BC=DA:DCなどから CD=ab/(c+a) AE=bc/(a+b) AD=bc/(c+a) BE=ca/(a+b) 後半の条件からBDとCEの交点をIとしたとき (a+b)IB=(c+a)IC BD=CE={(a+b+c)/(a+b)}IC までわかったのですがb=cをどうしても示せませんでした。 (AB=c,BC=a,CA=b)

  • 数1の三角形の頂点の二等分線の問題です。

    数1の三角形の頂点の二等分線の問題です。 どうしても解けません。 1、△ABCで、AB=√3、AC=2、∠A=60°とし、∠Aの2等分線とBCとの交点をDとする。ADの長さを求めよ。 2、△ABCにおいて、a=13、b=7、c=8とし、∠Aの二等分線とBCの交点をDとするとき、ADの長さを求めよ。 という問題の2つ、わかる方教えてください。 2に関しては一応答えはでたのですが、「15分の√2119+25」というめちゃくちゃな数字になってしまいました。。。

  • 定理「三角形の外角の二等分線と比」

    定理「AB≠ACである△ABCの∠Aの外角の二等分線と辺BCの延長線との交点は、辺BCをAB:ACに外分する」 の定理をAB>ACの場合で良いから証明しろ という基礎問題です。 一応先例に倣って、ADに平行且つ頂点Cを通る線ECを引き、「三角形の平行線と線分の比」を利用出来るようにし、 ∠AEC=∠ACEより、AE=AC、なので△AECは二等辺三角形 BC:CD=BE:EA BC:BD=BE:BA BC:BD=EC:AD が言えます。ですが、その先の証明に辿り着けません~ン。アドバイスだけでも良いので、ご協力お願いします!

  • 三角形

    △ABCの内心をIとして、BC=a、CA=b、AB=cとする このとき、角の二等分線よりBD:DC=AB:AC=c:bなのは分かりますが、 これよりBD=a×c/(b+c)となるらしいのです これは何故なのでしょうか?

  • 三角形の角の三等分線の定理とは?

    三角形の角の二等分線の定理とは、 △ABCで角Aの二等分線を引き、辺BCとの交点をDとすると、 DB:DC=AB:AC というものですが、△ABCで角Aの三等分線を引くと、辺BCはどのような比に分けられるのでしょうか?

  • 三角形の問題です

    AB=6、AC=3、cosA=1/4である三角形ABCにおいて、辺BCの長さはBC=6である。 辺ACのC側の延長上に点Dを∠ABC=∠DBCとなるようにとる。BD=x、CD=yとおくとx=2yである。 また、cos∠BCD=-1/4であるからx^2ーy^2-3y-36=0である。 よって、BD=8、CD=4である。 辺BC=6という答えまでは自力で出せたのですが、この後がどうやって解けばいいのかわかりません。 どなたかよろしくお願いします。

  • 三角形と比

    (1)画像で△ABC∽△ADE△ABC∽△AFGをそれぞれ証明しBC.DE.FGの長さの関係を調べなさい。 (2)△ABCの辺BCに平行な直線が2辺AB.ACと交わる点をそれぞれD.Eとするとき△ADEと△ABCの辺の間にどんな関係が成り立つか調べよう 教えて下さい!!

  • 三角形と台形の問題

    △ABCの∠C, ∠Bの二等分線が辺AB, ACと交わる点を、それぞれ、D, Eとする。 DE//BCならば、AB=ACとなることを証明せよ。 教科書で 直線BEは∠Bの二等分線であるから BA:BC=AE:EC 直線CDは∠Cの二等分線であるから CA:CB=AD:DB DE//BCから AE:EC=AD:DB 以上から、BA:BC=CA:CB ←ここが解りません。 どうして上の3つの比の式から、上のような比の式ができるのでしょうか? AD//BCである台形ABCDにおいて、辺BC, DAを等しい比 m:n に内分する点を それぞれ P, Qとする。このとき、3直線AC, BD, PQ は1点で交わることを証明せよ。 ACとBDの交点をRとして、ACとPQの交点をR`とすると AR:RC=AD:BC AR`:R`C=AQ:PC AQ=AD*n/(m+n), PC=BC*n/(m+n)をAR`:R`C=AQ:PCの式に代入して AR`:R`C=AD*n/(m+n):BC*n/(m+n) とすると AR`:R`C=AD:BC ←こう変化するのがわかりません どうしてn/(m+n)は消えてしまったのでしょうか? またこういう問題を解くのは苦手なんですが、解く上での心構えなどないでしょうか? おねがいします。

  • 三角形の問題【数I】

    連投すみません。 △ABCにおいてAB=7、BC=13、CA=8、∠Aの二等分線とBCとの交点をPとするとき、 (1)Aの大きさを求めよ。 (2)△ABCの面積Sを求めよ。 (3)AP=xとおいて、△ABCの面積Sをxを用いて表せ。 (4)APの長さを求めよ。 ご回答宜しくお願いします。