ベストアンサー 極限 2011/06/03 19:33 lim (n→∞)(2n)^4/n^4が解けません(><) 分かる方教えてください。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2011/06/03 20:06 回答No.1 (nの4乗) で約分して、lim[n→∞](2の4乗) です。 定数列の極限は、その定数自体になります。 質問者 お礼 2011/06/04 07:57 ありごとうございます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 極限 a>0のとき、lim(n→∞)a^n/n!を求めよ。 解いてみました。 lim(n→∞)a^n/n!=lim(n→∞)1*a^n/{n*(n-1)*(n-2)*...2*1} =lim(n→∞)1/n*a^n/{(n-1)!} lim(n→∞))1/n=0なので lim(n→∞)1/n*a^n/{(n-1)!}=0 ∴lim(n→∞)a^n/n!=0 としましたが、バツでした。どこがどう違っているのでしょう??? 極限値の問題です 以下の極限値を求める計算をしたのですが、 あっているか自信がありません。 詳しい方がいらっしゃいましたら、ご指導お願いします。 【問題】 一般項anが、次で与えられる数列{an}について、個々の収束・発散を調べ、収束する場合にはその極値を求めよ。 (1) 2^n (答)lim[n→∞] 2^n = ∞より、発散する。 (2) (2n^2+1)/(n^2+3) (答)lim[n→∞] (2n^2+1)/(n^2+3) =lim[n→∞] {2(n^2+3)-5}/(n^2+3) =lim[n→∞] { 2(n^2+3)/(n^2+3) - 5/(n^2+3) } =lim[n→∞] { 2 - 5/(n^2+3) } より、2に収束する。 (3) √(n+1)-√n (答)lim[n→∞] √(n+1)-√n =lim[n→∞] {(√(n+1)-√n)(√(n+1)+√n)}/(√(n+1)-√n) =lim[n→∞] (n+1-n)/(√(n+1)-√n) =lim[n→∞] 1/(√(n+1)-√n) また、lim[n→∞] 1/n = 0より、 √(n+1)-√nは、0に収束する。 以上、よろしくお願いします。 極限の問題なのですが lim[n→∞](7^n+8^n)^(1/n) を求めよ。 という問題なのですが、答えが出せなくて困っています。 lim[n→∞](2*8^n)^(1/n)=8 lim[n→∞](2*7^n)^(1/n)=7 なので、おおよその答えは分かるのですが、うまく解くことができません。解法を知っている方がいましたら教えてください。 極限 ①lim〔x→0〕√(1+x)-(1+1/2x-1/8x^2)/x^3=? ②lim〔x→0〕tanx-sinx/x^4{log(x^2+x^3)-logx^2}=? ③lim〔n→∞〕1/n〔1/sin1/n〕 ➃lim〔n→∞]1/nlog{n/n•n+2/n•n+4/n•••••3n-1/n} 教科書の極限の求め方が? lim〔n→∞〕2n/(n^2+1)を求めるとき、私は2n/(n^2+1)の分母だけにnを持っていくように分母分子をnで割って lim〔n→∞〕2n/(n^2+1) =lim〔n→∞〕2/(n+1/n) =0と考えたのですが教科書はn^2で割ってlim〔n→∞〕2n/(n^2+1) =lim〔n→∞〕(2/n)/(1+1/n^2)=0/1=0 としていました。 質問1、私のやり方は間違いですか?それか通用する範囲が狭いんでしょうか? 質問2、教科書の場合、lim〔n→∞〕2n/(n^2+1)を見て、どんな考え方の結果、nでもなくn^3でもなくn^2で割り、 lim〔n→∞〕(2/n)/(1+1/n^2)=0/1=0 としたのでしょうか? そもそもなぜ割ろうと思ったのでしょうか?(私のやり方も、どうして分母だけにnを集めたらうまくいったか分かりません…) すみません、まだ数3は初めてなのでわかりません、教えてください。 極限値の求め方。 解いてみたのですが、答えが合っているか分からないので添削、解答お願いします。 limの下にn→∞を書く書き方が分からないので、lim n→∞という変な書き方になってしまいますが、すみません。 lim n→∞ ((n/((n^2)+(1^2)))+(n/((n^2)+(2^2)))+…+(n/((n^2)+(n^2)))) これの極限値を求める問題です。 = lim n→∞ n((1/((n^2)+(1^2)))+(1/((n^2)+(2^2)))+…+(1/((n^2)+(n^2)))) = lim n→∞ 1/n(((n^2)/((n^2)+(1^2)))+((n^2)/((n^2)+(2^2)))+…+((n^2)/((n^2)+(n^2)))) = lim n→∞ 1/n((1/(1+(1^2)/(n^2)))+(1/(1+(2^2)/(n^2)))+…+(1/(1+(n^2)/(n^2)))) = ∫[0,1]1/(1+x^2)dx = [(tan^-1)x][0,1] =π/4 区分求積法を使って解いたのですが、合っている自信がありません。 見にくくなってしまったのですが、回答をお願いします。 極限値 区分求積からlim(n->0)1/nΣ[k=0,n-1](k/n)=∫(0->1)xdxとなるのは、わかりますが、 次の場合はどうなるのか、教えてもらえると有り難いです。 (1)lim(n->0)(1/n)^2Σ[k=0,n-1](k/n) (1/2)/n で、0というのは、あまりに間違っていると思います。 正しい、解答はどうなるのでしょうか。 (2)lim(n->0)1/nΣ[k=0,n-1](k/n)((k+1)/n) これは、((k+1)/n)=(k/n)とみていいのでしょうか。 正しい、解答はどうなるのでしょうか。 (1)、(2)について、基本的なことですが、よろしくお願いします。 極限について [∀n∈N,a[n]>0] lim(a[n+1]/a[n])=α ならば lim{a[n]^(1/n)}=α が成り立つらしいのですが (1)|a[n]^(1/n)-α|を上手くεで抑えられません…。どのようにして示せば良いのでしょうか? (2)逆は成り立たないのですか?(反例があるのでしょうか?) (1)(2)について、分かる方がいらっしゃいましたら回答よろしくお願いします。 数3 数列の極限 数列の極限を解いてみたのですが、 (1)の途中式は合ってますか? (1)lim n→∞ n/(n+1) lim n→∞ n/(n+1) ←分母と分子にn/1をかけ、 =1/(1+1/n) =1/(1+0) =1 あと、(2)はなぜこうなるのでしょうか? (2)lim n→∞ 3/n-√(n^2-n) を求めよ lim n→∞ 3/{n-√(n^2-n)} ←を有理化?し、 =lim n→∞ 3{n+√(n^2-n)}/n ↑で分母と分子にn/1をかけると思うのですが、 分子は3と{n+√(n^2-n)}の部分、 どちらにもかけるのではなく、 {n+√(n^2-n)}だけにかけるのはなぜですか? 教えていただけると有難いです。 よろしくお願いします。 極限値問題 極限値問題 lim[x→∞](1+(1/x))^x=eを使って、lim[x→-∞](1+(1/x))^x=e を示せという問題なのですが、どのように解けば良いのでしょうか? 以前、lim[n→0](1+n)^(1/n)=eの証明について質問させて頂きました。 証明は理解できました。 その時、lim[n→-0](1+n)^(1/n)=eも成り立つと言うご回答を頂きました。 (1/x)=nとおけば、lim[n→-0](1+n)^(1/n)と出来きます。 lim[n→+0](1+n)^(1/n)=lim[n→-0](1+n)^(1/n)がなぜ成り立つか証明 できませんので、教えて下さい。 感覚的には分かるのですが、式変形などで成り立つことが証明できないものでしょうか? 極限の問題です。 極限の問題です。 (1)lim n→∞ n^3+2n^2+3n+1/2^n (2)lim n→-∞ [1+1/n]^n 誰か教えてください!! 数列の極限 lim n→∞ 1-(-1)^n/nを求めよ。 0≦1-(-1)^n≦ア、n>0より 0≦1-(-1)^n≦2/イ lim n→∞ 2/n=0であるから。 lim n→∞=1-(-1)^n/n=0 アとイ教えて下さい(><) 極限の問題です lim[n→∞]1/√(n){1/√(n+1)+1/√(n+2)+・・・+1/√(2n)}という問題です。 私は lim[n→∞]1/√(n){1/√(n+1)+1/√(n+2)+・・・+1/√(2n)} =lim[n→∞]1/√(n){1/√(n+1)+1/√(n+2)+・・・+1/√(n+n)}なので、ヒントを得るために、 n=1の時、1/√(1){1/√(1+1)}=1*{1/√(2)}=1/√(2) n=2の時、1/√(2){1/√(2+1)+1/√(2+2)}=1/√(2){1/√(3)+1/√(4)} n=3の時、1/√(3){1/√(3+1)+1/√(3+2)+1/√(3+3)}=1/√(3){1/√(4)+1/√(5)+1/√(6)} のように考え、和を求めてから有理化もしてみましたが、極限を求められるような展開ができませんでした。 どなたかアドバイスをいただければと思います。宜しく願い致します。 極限値求めてください>< lim[n→∞]{(n+1)(n+2)…(n+n)}^(1/n) 解き方がわからないので教えてください>< 答えは4/eです。 極限 lim{(1/n)×(√(n!))^(1/n)} n→∞ を解け、という問題なのですがどのようなやり方で解けばいいでしょうか?定積分をつかうのだとは思うのですが・・・・ わかる方がいたら教えてください。 極限値 極限値を求めよ。 lim n→∞√(n^2-2n)-nはどう求めたらよいのでしょうか・・・ 極限値の問題です。 ≪問題≫ (1)lim{12/n[n/3]}(n→∞) (2)lim{a^n+(1+a)^n}^(1/n) (ただし,a>0) (3)lim{1-(1/(2^2))}{1-(1/(3^2))}…{1-(1-1/(n^2))} (2)はガウス記号を用いています^^; 手も足もでません^^; よろしくお願いします。 極限の問題 かなり基礎の問題だと思うんですが、解けません(;;) (1)lim(n+1)×(n-2)÷(n+3) n→∞ (2)lim(n+1)÷(√2n+1) n→∞ (1)(2)の極限がどうして∞になるのかわかりません。 わかりやすく解説して欲しいです。 (3)2のn乗>{n(n-1)}÷2 を用いて、 lim n÷2のn乗 =0 n→∞ を証明するのですが、解答を見ると、 2のn乗>{n(n-1)÷2} の式を変形すると、 2 n --- > ---- > 0 n-1 2のn乗 と書いてあります。どうやって変形したのか途中の式を 教えてください。 極限値 極限値を求めよ。 lim n→∞ 5n-3/n^2+2n+3 答えは0であっていますか? 極限 lim n→∞ (ー2n+3/n)=ー∞になるのはなぜですか?
お礼
ありごとうございます。