• ベストアンサー
  • すぐに回答を!

3次関数の極値

3次関数f(x)=-2x^3+9x^2-10のグラフをCとする。f(x)の極値を与えるC上の2点をA、Bとする。線分ABの中点MはC上にあることを示せ。 という問題で、疑問なのは、解答では、 f'(x)=0からx=0,3を求めた後、増減表を書いてから、増減表がこのようになるから点A、Bの座標は…としているのですが、増減表を書く必要はあるのでしょうか? 『3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ』なのだから、f'(x)=0の異なる2つの解が求まったらそれがA、Bのx座標に決定すると思うのですが、違うのでしょうか?

noname#137812

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数366
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • alice_44
  • ベストアンサー率44% (2109/4758)

3次関数の場合、『3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ』なのですが、 一般の微分可能な関数では、『f(x)がx=aで極値をもつ⇔f'(x)の符号がx=aの両側で異なる』であって、 f'(a) = 0 だけでは十分でありません。 解答例は、3次関数固有の性質に依存せず、極値の一般論を使って証明しようとしているのです。 そのため、x = 0, 3 のそれぞれ両側で f'(x) の符号が異なることを示す必要があり、 増減表を使っています。 そもそも、3次関数固有の性質を証明に使ってよいのなら、ABの中点がC上にあること自体が 有名な事実なので、「自明」だけで証明が済んでしまいます。 そうではない解答がしたいなら、解答例のようにすべきでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど。ありがとうございました。

関連するQ&A

  • 3次関数が極値をもつ必要十分条件

    3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値-6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値-6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=-6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…

  • 3次関数について

    一般に3次関数で、3個の実数解をもつための条件は関数f(x)が極値をもち、極大値と極小値が異符号となること。 問題  x^3+px+q=0 (p,qは実数)が3個の実数解をもつための必要十分条件を求めよ。 この問題に対して、私はx=sのとき極大値をもち,x=tのと極小値を持ち f(s)>0,f(t)<0  (s<t) ならばいいと判断したのですが、 教科書では f(s)×f(t)<0という条件をもとに,答えをだしているのですが、 x^3の係数は正なので、なぜそのような条件になるか分からないのですが、分かる方教えてください。

  • 3次関数が極値をもつための条件とは。x^3係数1

    こんにちは。  f(x)=x^3+ax^2+bx+c から   f’(x)=3x^2+2ax+b (1)・・・・・・・・・    D/4=a^2-3b>0 (2)・・・・・・・・・ (3)・・・・・・・・・ で、正解ですか?  それとも、(1)・・・・・・・・・の部分に、 f(x)が極値をもつとき、3x^2+2ax+b=0が異なる2つの実数解をもつから、 と書かないと減点ですか? また、(2)・・・・・の部分に 解答に書いてあるのですが、 逆に、このとき、f’(x)=0は異なる2つの実数解をもち、その解の前後で f’(x)の符号が変わるからf(x)は極値をもつ。 これがないと減点ですか? さらに、最後のまとめとして、(3)・・・・・・求める条件は、    よって、求める条件は、a^2-3b>0, cは任意 とあります。  このまとめと、とくに cは任意と書かないと減点すか?

  • ・微分の問題です

    3次関数F(X)=2/3X^3&#65293;(4a+1)/2X^2+2aXについて、F(X)が極値を持つための条件を求めよ。 …という問題で、私の解答は 極値を持つときはF'(X)=0が異なる2つの実数解を持つときなので F'(X)=2X^2&#65293;(4a+1)X+2aを求めて、 判別式D=(4a&#65293;1)^2>0 より、a>1/4 と、求めたのですが 答えはa≠1/4です。 どこを間違えたのか教えてください。お願いします。

  • 高校数学の問題です。

    以下の問題の(2)(3)について教えてください。 実数全体を定義域とする関数 f(x) = 2^3x &#65293;9・2^2x+1 +15・2^x+2 について、 次の問いに答えよ。 ※「2の3x乗」、「-9・2の2x+1乗」、「+15・2のx+2乗」 (1) 2^x = t とおく。関数 f(x) を t で表し、得られた t の関数を g(t) とおく。   関数 g(t) の増減と極値を調べ、 y = g(t) のグラフをかけ。   ただし、g(t) の定義域は、x が実数全体を動くときに t が動く範囲とする。   =>これはできました。 (2) 方程式 f(x) = k が異なる正の解2個と負の解1個をもつような実数の定数 k の値の範囲を求めよ。 (3) k が(2)で求めた範囲を動くとき、方程式 f(x) = k の3個の解の和のとり得る   値の範囲を求めよ。

  • 極値の条件から関数決定

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり,x=2で極小値-6をとるとき,定数a,b,c,dの値を求めよ。 教えてほしいところ この問題でa,b,c,dの値が求まった後、その値で本当に極値をとるのか見当する必要があるらしいんですが理解できません。 f`(α)=0→f(x)がx=αで極値をとる これがなり立たないのは理解できます。なぜなら,f`(x)=0でD=0の可能性があるからです。 しかし、今回の問題ではf`(x)=0の解は2つあるという条件を組み込んでいるので、D=0の可能性は消えます。 つまり、f`(x)=0の解がα,βで(α>β)→f(x)がx=αで極値をとるということは成り立つはずです。 さらに、どちらが極大で極小をとるという保証もf(0)=-6,f(2)=0で十分なはずです。 よって逆の確認は必要ないのでは??? ご意見ください。

  • 極値の問題です 途中式もお願いします

    関数f(x)=log(sinx+2) (0<x<2π)について、次の問いに答えよ (1) f(x)の第一次導関数f'(x)と第二次導関数f''(x)を求めよ (2) f(x)の極値を求めよ (3) f(x)の変曲点を求め、y=f(x)のグラフの概形を座標平面上にかけ (4) kを実数の定数とするとき、0<x<2πにおけるlog(sinx+2)-kの解の個数を調べよ

  • 座標平面上の三角関数の問題です

    ちょっと問題を解いたんですが答えがなかったので質問させていただきます。 ・座標平面上に点A(π , 1)がある。また、関数y=cosxのグラフ上に点Pをとり、AとPとの中点をQとする。 (1)Pの座標を(t , cost)とするとき、Qの座標をtを用いて表せ。 (2)Qの座標を(x , y)とするとき、yをxの関数として表せ。またyの最大値と最小値を求めよ。 (3)設問(3)で求めた関数をf(x)とする。2つの関数y=cosxとy=f(x)のグラフの好転について、そのy座標の取りうる値を全て求めよ。ただし、xの範囲は全て実数とする。 以下自分の解いた答えです。 (1)Q(x+t/2 , 1+cost/2) (2)y=(sinx)^2 最大値1 最小値0 (3)-1+√5/2 間違っている個所があったら、お時間があれば解説もしただけると幸いです

  • 3次関数の接線について質問

    皆さん初めまして。 3次関数の接線問題についてどうしても分からない問題がありましたので、 お助けいただけると幸いです。 f(x) = x^3 + px^2 + qx がある。 x=aにおける曲線,y=f(x)の接線が、接点P(a, f(a))と、P以外の点Qで、 曲線y=f(x)のグラフと交わっている。 このとき点Qのx座標をaとpで表せ。 以上、問題です。皆様どうぞ宜しくお願い致します。

  • 次の関数の増減を調べ、極値を求めよ。また、そのグラフをかけ。

    次の関数の増減を調べ、極値を求めよ。また、そのグラフをかけ。 の問題でy=&#65293;x^3&#65293;2xで、解き方が分からないので教えて下さい。