- ベストアンサー
極方程式
点Aの極座標を(2,0)とし、極Oと点Aを結ぶ線文を直径とする円Cの周上の任意の点をQとする。 点Qにおける円Cの接線に極Oから垂線OPを下ろすとき、点Pの軌跡の極方程式を求めよ。 ただし、点Pの偏角θは0≦θ<πとする。
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (2)
- Mr_Holland
- ベストアンサー率56% (890/1576)
- info22_
- ベストアンサー率67% (2650/3922)
関連するQ&A
- 極方程式と軌跡について
点Aの極座標を(10,0)、極Oと点Aを結ぶ線分を直径とする 円Cの周上の任意の点をQとする。点Qにおける円Cの接線に極O から垂線OPを下ろし、点Pの極座標を(r,θ)とするとき、そ の軌跡の極方程式を求めよ。ただし0≦θ<πとする。とあって、 θ=π/2のとき、OP=5+5cosπ/2を満たす。とあり、 このとき、Qが(5√2,π/4)となるのですが、どうやって 求めるのか、またAはどうなるのかわかりません。よろしくお 願いします。
- ベストアンサー
- 数学・算数
- 極座標なんですが、図示とどうなりますか?
点Aの極座標を(10,0)、極Oと点Aを結ぶ線分を直径とする 円Cの周上の任意の点をQとする。点Qにおける円Cの接線に極O から垂線をOPとする 円cを描き、その周上の適当な場所に点Qをとって点Pを図示せよ
- ベストアンサー
- 数学・算数
- 曲線の方程式の求め方が分かりません
点(a,0)を中心とする半径aの円Cの点(2a,0)における接線mを考える。m上の点Pに対して、線分OPと円Cの交点をQとするとき、OX=PQとなるような線分OP上の点Xの描く軌跡の方程式を求める問題です。どうやらシソイドになるようなのですが、どうしてもシソイドの方程式を導くことができません。分かる方いましたら教えてください。
- ベストアンサー
- 数学・算数
- 数学の問題がわかりません!!
円xの二乗+yの二乗-6x-8y+21=0について、次の問いに答えよ。ただし、座標軸の原点をOとする。 (1)円の中心および半径を求めよ。 (2)点Pがこの円の周上を動くとき、OPの最大値と最小値を求めよ。 (3)点Pがこの円の周上を動くとき、線分OPの中点Qの軌跡を求めよ。 この3つです!わかる方がいらっしゃったら、回答よろしくお願いします(;_;)
- ベストアンサー
- 数学・算数
- 数cです 途中式もお願いします
極座標が(2,0)である点Aを通り始線OXに垂直な直線をLとし、L上の動点をPとする 極Oを端点とする半直線OP上に、OP・OQ=4を満たす点Qを取るとき、点Qの軌跡の極方程式を求めよ
- 締切済み
- 数学・算数
- 放物線と方程式
分からない問題があるので教えてください。一応少しは解けましたが、難しすぎて歯が立ちません。どうか、よろしくお願いします。すべて教えていただけなくても、結構です。 y=x^2によって定められたxy平面状の放物線をCとする。C上にない点PとC上にある2点Q,Rについて、次の条件を満たしている。∠RPQ=90°, 線分PQは点QでCの接線と直交している, 線分PRは点RでCの接線と直交している。次の問いに答えよ。 (1)点Qのx座標をa,点Qにおける接線の方程式の傾きをmとしたとき、この接線の方程式をa,mを用いて表せ。 (2)mをaの式で表せ。 (3)点Rのx座標をbとする。このとき次の座標をa,bをを用いて表せ。 1,2点Q,Rの中点Mの座標 2,2点Q,RにおけるCの接線のの交点Sの座標 (4)点Pの座標をa,bを用いて表せ。 (5)点Q,RがC上を動くとき、点Pの奇跡の方程式を求めよ。 (6)a>0とする。△QSMの面積をS(a)と置き、これを求めよ。 (7)点QがC上を動くとき、△PQRの面積の最小値を求めよ。 解答できたのは、(1)だけです。(3)-1もできましたが、(2)が解けないため、(3)-2はできませんでした。
- ベストアンサー
- 数学・算数
- 図形と方程式
Oを原点とする座標平面上に、半径がすべてr(rは正の定数)である3つの円C1、C2、C3がある。円C1、C2の中心は、それぞれO、A(-6,8)である。また、円C3は2つの円C1、C2に外接し、その中心Bは第1象限にある。 (1)線分OAの二等分線の方程式を求めよ。 →自力で解けました。 y=3/4x+25/4です。 (2)円C1、C2が2点L、Mで交わり、LM=5であるとき、rの値と点Bの座標を求めよ。 →△ONLで三平方の定理を使い、点Bのx座標をaとおき、OB^2=(2r)^2であることに式に表す。を使いそうです。 (3)(2)のとき、円C3の周上に動点Pをとる。OP^2+AP^2の最小値を求めよ。 →P(s,t)とおくとOP^2+AP^2になり、NP^2もs、tの式にするそうです。 解答と解説をお願いします。
- ベストアンサー
- 数学・算数
- Macユーザーのためのhhkb studioのキーマップ変更ツールにおいて、ショートカットキーの割当に困っています。
- commandやcontrolの割当はできますが、optionの割当ができないため、困っています。
- optionを割り当てる方法について教えていただけると助かります。
お礼
ありがとうございました 絵を描いて考えたら説明の通りに考えてたら出来ました