• ベストアンサー

数学についてに質問です

vはR^nの部分空間であるとして (1)dim(v)=rとする。a1,・・・arが一次独立ならばa1・・・・,,arはvを生成することを示せ。 したがって、このときa1,・・・,arはvの基底をなす。 (2)v1,,vs∈vが一次独立とする。必要ならばいくつかのベクトルu1,・・・,ur∈vを追加してv1,・・・,vs,u1,・・・,urがvの基底になるようにできることを用いてv1,・・・,vs∈vが一次独立ならばs<_dim(v)であることを示せ よくわかりません ちからをお貸しください

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

(1) 次元の定義と基底の定義を確認すれば、証明はほぼ自明。 それが解ると、 「したがって、このときa1,…,arはvの基底をなす。」では 話の順番がオカシイことにも気づくはず。 (2) 「…ことを用いて」の部分を証明せずに使ってよいなら、 証明せねばならない部分は、ほとんど何も残っていない。

関連するQ&A

  • 線形の証明問題を教えてください

    線形代数の証明問題を教えてください 1、m×n行列全体のつくるベクトルの空間Vにおいて、(i.j)成分が1で他の成分がすべて0であるm×n行列をEijとすると、 Eij(i=1,2・・・、m ;j=1,2・・・n)はVの基底である事を示せ。 2、Vを有限次元ベクトル空間、U、WをVの部分空間とするとき dim(U+W)+dim(U∩W)=dimU+dimW であることを示せ。 (dim(U∩W)=r ,dimU=s ,dimW=tとする。a1,・・・,arをU∩Wの基底とし、これを拡張して得られるUの基底を a1,・・・,ar, b1・・・,bs-r, Wの基底をa1,・・・,ar ,c1・・・,ct-rとする。 a1,・・・,ar, b1・・・,bs-r, c1・・・,ct-r がU+Wの基底になることを示す。) この2問がどうしても証明できません。どちらでもいいので分かる方解答をお願いいたします。

  • 基底 一次独立 についての質問

    R^3の空間において、v1,v2∈R v1=(1,0,0),v2=(0,1,0)は一次独立だがR^3の基底では無い。 なぜ、このベクトルv1,v2は一次独立となるのでしょうか? 基底とならないことは理解できます。 正方行列でなければ、行列式が作れないはずなのに・・・ 2つのベクトルを行列の形に並べると(行列のカッコは表記上つけられませんでした・・) 10 01 00 となり、階段行列よりrank=2なので 10 01 の行列について考えれば良いという事でしょうか?これなら、一次独立であることは理解できます。 また、R^2の空間においては、 10 01 00 は、基底となりうるのでしょうか? R^2の場合、3行まであるような表記はしない? ご回答よろしくお願い致します。

  • 数学

    Aが実対称行列で、u_1,,,u_nがAの固有ベクトルで、正規直交基底とします。 Au_i=λ_iu_iとして、λ_1>=,,,λ_nとします。 WをR^nのi次元の部分空間としたとき、 λ_i>=min_(u∈W, u≠0)(u^(転置)Au)/u^(転置)u となる証明をどなたかお願いします。

  • 数学についてしつもんです

    f:R^n→R^mを線型写像とする。a1・・・・ar∈R^nに対し、f(a1),・・・・f(ar)∈R^mが一次独立ならばa1,・・・・ar∈R^nが一次独立であることを示せ の問題なのですがさっぱりわかりません 助けてください

  • 線型空間 基底の証明

    U, V, U @ V 線型空間 f : U × V → U @ V 双線型写像 (U @ V, f) U と V のテンソル積 f(u, v) = u @ v dim U = m, 基底 {u_1, u_2, ..., u_m} dim V = n, 基底 {v_1, v_2, ..., v_n} S = {u_i @ v_j | 1 ≦ i ≦ m, 1 ≦ j ≦ n} 基底を証明したい <S> = U @ V は f(u, v) を計算して証明できたのですが S が線型独立の証明を教えてください r_11(u_1 @ v_1) + ... + r_mn(u_m @ v_n) = 0 とおいたまま立ち往生です

  • 数学

    v1=(1,-1,4,3,1),v2=(0,0,5,3,1),v3=(-2,2,7,3,1).v4=(0,-1,2,1,1),v5=(4,-5,3,4,2)で生成される部分空間をV、 w1=(2,-1,2,2,-1),w2=(4,1,2,4,-3),w3=(1,-2,2,1,0)で生成される部分空間がWのとき、 dimV,dimW を求める問題がわかりません。また、v1~v5から選んでVの基底を一つ与え、その理由と、 dim(V+W),dim(V∩W)を求める問題を、どなたか分かる方お願いします。

  • 線形空間は必ず基底を持つ(有限次元)

     先日某所で、明らかに有限次元のベクトル空間に関すると思える話に出会い、   「線形空間は必ず基底を持つ!({0}は除く)」 とやってしまいました。その時、   「持つためには、選択公理が必要」 という指摘を頂いて、「有限次元では(選択公理不要)」と加えたのですが「これって本当にそうなのか?」とふと思い、質問しています。以下、有限次元に限定します。 (1)今までは・・・  今までは、こう思って来ました。「次元の等しい線形空間は、みな同型」という事から、要は数ベクトル空間について、基底を持つかもたないか、調べれば良いはずだと。  n次の(n次元とは言いませんの)数ベクトル全体をVをすれば、Vには 自然な生成系、  B={(δi1),(δi2),・・・,(δin)}(δijは、クロネッカーのデルタ) があり、Bが生成系である事はすぐわかり、(δij)らが互いに独立である事もすぐわかり、さらに任意のv∈VがBのベクトルに従属なのもすぐわかるから、n次の数ベクトル全体Vは、長さがnの基底を持ちn次元で、有限次元線形空間は、選択公理抜きで必ず基底を持つと。 (2)定義に戻ってみると・・・  ところが基底の定義は、   「Vから取り出せる、独立なベクトルの集合で、最大本数を持つもの」 となると思います。ここでは有限次元に限定しているので、最大本数と書きました。  この定義に忠実に従って基底の有無を調べるとしたら、Vの部分集合全てを調べなければならない気がします。このような操作のためには、やっぱり選択公理が必要でないのか?、と突然気づきました。有限次元であっても、Vに含まれるベクトルは、無数にあるので・・・。  (1)と(2)は、本質的に同じでなければならないと思います。そうすると(1)においても、どこかで選択公理のお世話になっているんでしょうか?。

  • 大学の数学(ベクトル)

    命題:r個のベクトル (a1)ベクトル,(a2)ベクトル ,・・・, (ar)ベクトル∈n次元実ベクトル が一次独立   ⇔どの(aj)ベクトルも他のr-1個のベクトルの一次結合ではない これを証明する方法を教えてください。明日までにやっていかなくと行けなくて、困っています。誰かお願いします。

  • 正規直交基底の存在性

    計量ベクトル空間の正規直交基底の存在性についてです. 証明の手順は以下のようにやろうと考えています. 計量ベクトル空間V,dimV=n ⇒線形独立な集合Aが存在する(1) ⇒Vの基底E:={ei}(i=1,2,...n)が存在する(2) (Aにいくつかベクトルを足すことで構成する) ⇒Vに正規直交系E':={ei'}}(i=1,2,...n)が存在する(3) (Eにシュミットの直交化法を施す) ⇒E'はVの基底である(4) ⇒E'はVの正規直交基底である(5) (1)⇒(2)⇒(3)は示せるのですが, (3)⇒(4)が示せません. どなたか,アドバイスなどよろしくお願いいたします.

  • 階数と退化次数の命題(松坂さんの『線形代数入門』)

    松坂さんの『線形代数入門』p104の定理3.19からの抜粋です。 V,Wをベクトル空間として、Vは有限次元であるとする。そのとき、線形写像F:V→Wの像をW'、核をV'とすれば、 dimW'+dimV'=dimV が成り立つというものがあります。 この証明の流れを軽くかくと、 dimV(=n)、dimV'(=s)の次数を決める。すると、V'はVの部分空間なのでdimV'の基底を拡張したものがdimVの基底になる。 その拡張した基底(r個追加して拡張したことにする)のFによる像がdimW'の基底となることを示す。 するとs+r=nとなり定理が証明できたことになる。 この証明の中で、拡張したもの像がW'を生成すること、1次独立であることを示したらそれが基底であることが言えるわけですが、1次独立であることをしめしている箇所がわかりません。 1次独立の定義は、一次結合が0になるのは、その実数係数がすべて0の時に限るということだったはずですが、この証明においては、実数係数がすべて0であるということは述べていますが、その時に限るということは言えていない気がします。 どなたかお答えいただけると幸いです。