- ベストアンサー
重積分
次の値をもとめてください (1)∬D x^2dxdy,D:(x-1)^2+y^2<=1,0<=y (2)∬D logx/y^2dxdy,D:1<=x<=2,1<=y<=x (3)∬D (x^2+y^2)dxdy,D:x+y<=1,0<=x,y (4)∬D √4x^2-y^2dxdy,D:0<=y<=x<=1 (5)∬D dxdy/(1+x^2+y^2)^2,D:(x^2+y^2)^2<=x^2-y^2 途中計算も教えてください。 すいませんが至急おねがいします。
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
(1) x=1+cost,(π≧t≧0) ∬_{(x-1)^2+y^2≦1,0≦y}(x^2)dxdy =∫_{0~2}{x^2∫_{0~√(2x-x^2)}dydx =∫_{0~2}{x^2√(2x-x^2)}dx =∫_{π~0}[{(1+cost)^2}sint](-sint)dt =∫_{0~π}{1+2cost+(cost)^2}(sint)^2dt =∫_{0~π}{(sint)^2+2cost(sint)^2+((sin2t)/2)^2}dt =∫_{0~π}{(1-cos2t)/2+cost-cos3t+(1-cos4t)/8}dt =[t/2-(sin2t)/4+sint-(sin3t)/3+t/8-(sin4t)/32]_{0~π} =(π/2)+(π/8) =5π/8 (2) x=e^t,(0≦t≦log2) ∬_{1≦x≦2,1≦y≦x}(logx)/y^2dxdy =∫_{1~2}(logx)(∫_{1~x}y^{-2}dy)dx =∫_{1~2}(logx)([-y^{-1}]_{1~x})dx =∫_{1~2}(logx)([1-x^{-1})dx =∫_{0~log2}(te^t-t)dt =∫_{0~log2}(te^t)dt-∫_{0~log2}tdt =[te^t]_{0~log2}-∫_{0~log2}(e^t)dt-[(t^2)/2]_{0~log2} =2(log2)-1-{(log2)^2}/2 (3) ∬{x+y≦1,0≦x,y}(x^2+y^2)dxdy =∫_{0~1}∫_{0~1-y}(x^2+y^2)dxdy =∫_{0~1}([(x^3)/3+xy^2]_{0~1-y})dy =∫_{0~1}[{(1-y)^3}/3+(1-y)y^2]dy =∫_{0~1}[{(1-y)^3}/3+(1-y)y^2]dy =∫_{0~1}[(1-3y+6y^2-4y^3)/3]dy =[(y/3)-{(y^2)/6}+{(2y^3)/3}-{(y^4)/3}]_{0~1} =(1/3)-(1/6)+(2/3)-(1/3) =1/2 (4) y=2xsint,(0≦t≦π/6) ∬_{0≦y≦x≦1}√(4x^2-y^2)dxdy =∫_{0~1}∫_{0~π/6}2x^2(1+cos2t)dtdx =∫_{0~1}x^2[2t+sin2t]_{0~π/6}dx =(π/3+√3/2)∫_{0~1}x^2dx =(π/9)+{(√3)/6} (5) x=rcost,y=rsint,z=1+r^2 ∬_{(x^2+y^2)^2≦x^2-y^2}{1/(1+x^2+y^2)^2}dxdy =∬_{r^2≦cos2t}{r/(1+r^2)^2}drdt =∫_{-π/4≦t≦π/4,3π/4≦t≦5π/4}∫_{1~1+cos2t}{1/(2z^2)}dzdt =∫_{-π/4≦t≦π/4,3π/4≦t≦5π/4}[-1/(2z)]_{1~1+cos2t}dt =∫_{-π/4≦t≦π/4,3π/4≦t≦5π/4}[cos2t/{2(1+cos2t)}]dt =∫_{-π/4≦t≦π/4,3π/4≦t≦5π/4}{(1/2)-[1/{4(cost)^2}]}dt =[(t/2)-(1/4)tant]_{-π/4≦t≦π/4,3π/4≦t≦5π/4} =π/2
お礼
ありがとうございます。 助かります。