• ベストアンサー
  • 困ってます

次の各問題に使う公式を教えてください。

△ABCにおいて、a=1,b=√7、c=√3のとき次の問いに答えよ。 (1) cos Bの値と∠Bの大きさを求めよ。 (2) sin Bの値を求めよ。 (3) 外接円の半径を求めよ。 (4) △ABCの面積を求めよ。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

余弦定理 b^2=a^2+c^2-2ac・cosB 正弦定理 a/sinA=b/sinB=c/sinC=2R 三角形の面積 S=1/2ac・sinB

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。しっかり予習しておきたいので大変助かります。

関連するQ&A

  • 代数の問題です

    中3・代数の問題です。 解答がなくて困っています。 どうか教えてください!よろしくお願いします! (1) △ABCにおいて、次の値を求めなさい。 (1)a=4√6、A=60°、B=45°のとき、bと外接円の半径R (2)c=12、A=15°、B=120°のとき、bと外接円の半径R (2) △ABCにおいて、次の値を求めなさい。 (1)b=4、c=6、A=60°のとき、a (2)a=7、b=8、c=13のとき、C (3)A=45°、C=75°、a=2のとき、b、c (3) △ABCにおいて、b=√7、c=2、B=120°のとき、aの値を求めなさい。 (4) 次の△ABCの面積Sを求めなさい。 a=√5、c=2、cosB=-1/3 (5) △ABCにおいて、a=8、b=7、c=6であるとき次の問いに答えなさい。 (1)cosC、sinCの値を求めなさい。 (2)△ABCの面積Sを求めなさい。

  • 数I 三角形の問題

    △ABCにおいて、sinA/2=sinB/3=sinC/4=のとき、次の値を求めよ。 (1)cosA   (2)sinA  (3)tanA △ABCにおいて、a=7、b>c、A=120°、面積S=15/4√3であるとき、次の値を求めよ。 (1)外接円の半径R  (2)b、c  (3)内接円の半径r お時間のある方、手助けお願いします。

  • 数学の宿題が分かりません!

    AB=2、BA=CA=4である△ABCの外接円の周上にAD=2となるように点Dをとる。ただし点Dは点Bと異なる点とする。次のものを求めろ。 (1)cos∠ABCの値 (2)△ABCの外接縁の半径R (3)線分CDの長さ (4)四角形ABCDの面積S (5)△ABCの内接円の半径r という問題です。 どうやってcosやsinをどう出せばいいのか分かりません><。 特に(5)が分からないので、詳しく説明してください…。

  • 余弦定理

    △ABCにおいて、A=60°,b=8,c=5のとき次の値を教えてください。 1.a 2.△ABCの面積S 3.外接円の半径R 4.内接円の半径r 教えてください、お願いします。

  • 数学の三角形、三角関数の範囲の問題について質問です

    1、 0°<θ<180°とするとき、方程式 3sin^2θ+(√3-3)sinθcosθ-√3cos^2θ=0の解は θ={問一}、{問二}である。 2、 △ABCにおいて、AC=4、BC=6、∠C=60°であればAB={問三}であり、 この三角形の内接円の半径は{問四}である。 3、 0°<θ<180°とするとき、方程式√3(cos^2θ-sin^2θ)=2sinθcosθの 解はθ={問五}、{問六}である。 4、 一辺の長さが3aの正三角形ABCにおいて、辺BCを三等分する点をD、Eとする。 このとき、AD={問七}であり、cos∠DAE={問八}である。 5、 円に内接する四角形ABCDがあり、対角線ACとBDは垂直で、この四角形の 面積は50/9である。ACとBDの交点をEとし、∠BAE=45°、AE=1、BC=aとすれば、 aの値は{問九}である。また、この円の半径は{問十}である。 この五題がわかりません;;; 解き方、答えを教えてください、よろしくお願いします!;;

  • 図形の問題がわかりません

    同一平面上に4点O、A、B、C、Dがあり、Oは△ABCの外接円の中心である。 AB=5、BC=8、CD=5、DA=3、∠ABC=60°とする。 (1)CA= (2)cos∠CDA= (3)△ABCの外接円の半径R= (4)△OCAの面積S1= (5)四角形ABCDの面積S2= どれか1つでもいいので、解き方を教えてください。

  • 三角関数の問題です。

    △ABCは、tan∠BAC=4/3、BC=6を満たしているものとする。 (1)sin∠BACおよびcos∠BACの値をそれぞれ求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積の最大値と、そのときの辺ABの長さを求めよ。 という問題です。 (1)(2)は解けたのですが、(3)が分かりません。 どうやって最大値を求めれば良いのでしょうか? ヒントを教えてください。よろしくお願いします。

  • 徳島大学の数学の入試問題です。

    原点を中心とする半径1の円上の4点E(1,0) A(cosθ,sinθ) B(cos2θ,sin2θ) C(cos3θ,sin3θ) を考える。ただし、0<θ≦π/3 とする。 (1)線分AEの長さをcosθを用いて表わせ。 (2)△ABCの面積S1 をsinθとcosθを用いて表わせ。 (3)△OACの面積S2が△ABCの面積S1と等しくなるときのθを求めよ。 (4)θ=π/3 のとき、△ABCの内接円の半径rを求めよ。 (1)はAE=√2(1-cosθ) と出ましたが その先が分かりません。 解説をお願いします。

  • 三角比の問題です!

    この問題よろしくお願いします^^ できれば、途中式も教えていただけたら嬉しいですm(__)m AB=c、BC=a、CA=bである△ABCにおいて、a:b:c=5:3:7であるという。 (1)このときのcosC (2)△ABCの面積が15√3であるときのcの値、外接円の半径、内接円の半径 去年の日本歯科大の入試問題らしいです゜゜

  • 数学I 三角比の図形(正弦・余弦定理)の問題

    基本的な問題ばかりですが解いてみたものの回答が手元になくて困っています。多いですがよろしくお願い致します。 1.△ABCでAB=4 , AC=5 , BC=2とする。 (1)cosAを求めよ。 (2)△ABCの面積を求めよ。 (3)外接円の半径を求めよ。 2.△ABCで∠A=60°, AB=3 , AC=4とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 3.△ABCでAB=5 , AC=6 , BC=√91とする。 (1)∠Aを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 4.△ABCでAB=7 , AC=5 , ∠A=60°とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 5.△ABCでAB=2 , AC=4 , BC=3とする。また∠Aの二等分線とBCの交点をDとする。 (1)BDを求めよ。 (2)cos∠Bを求めよ。 (3)ADを求めよ。