• ベストアンサー
  • すぐに回答を!

漸化式と極限の問題

p,qは正の有理数で、√qは無理数であるとする。自然数nに対し、有理数An,Bnを(p+q)n乗=An+Bn√qによって定める。 (1)(p-√q)n乗=An-Bn√qを示せ。 (2)An   ― ――→ √q を示せ。    Bn (n→∞) 出典:03大阪市大 この問題の解答を教えていただきたいです。 (1)は数学的帰納法を使えば解けるのは分かっているのですが、n=1がどう説明すれば成立を示せるのかが分からず、困っています。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • R_Earl
  • ベストアンサー率55% (473/849)

> 有理数An,Bnを(p+q)n乗=An+Bn√qによって定める。 これ成り立ちませんよね。 正しくは (p + √q)n乗 = An + Bn√q でしょうか? > (1)は数学的帰納法を使えば解けるのは分かっているのですが、n=1がどう説明すれば成立を示せるのかが分からず、困っています。 (p + √q)n乗 = An + Bn√qにn = 1を代入してA1とB1を求め、 それを元に(p-√q)n乗=An-Bn√qがn = 1で 成り立つ事を示せば良いのではないでしょうか? (p + √q)n乗 = An + Bn√qにn = 1を代入すると p + √q = A1 + B1√q なので、左辺と右辺を見比べるとA1 = p, B1 = 1となります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました! もう一度自分で解き直ししてみます!!

関連するQ&A

  • 漸化式?

    数列{An}をA1=P(P>0),An+1(n+1はAの右下にある)  An^2+2 =―――― (n=1、2・・・)で定める。  2An+1        An-1 (1)Bn=――― と置くとき、Bn+1をBnで表せ      An+2 この問題が分かりません。たぶん漸化式だと思うのですが、2乗の漸化式などやったことがないので分かりません。よろしくお願いします。

  • 漸化式?

    数列{An}をA1=P(P>0),An+1(n+1はAの右下にある)   An^2+2 =―――― (n=1、2・・・)で定める。   2An+1          An-1 (1)Bn=――― と置くとき、Bn+1をBnで表せ        An+2 この問題が分かりません。たぶん漸化式だと思うのですが、2乗の漸化式などやったことがないので分かりません。よろしくお願いします。

  • 数列の問題です。教えて下さい!

    a1=3、an+1=2-an分の1(n=1,2,3,・・・)で定められる数列{an}がある。 数列{bn}をbn=2のn乗×an分の2n+1(n=1,2,3・・)によって定められる。 S=b1+b2+b3+・・・・bnとするときSをnを用いて表せ。 anは数学的帰納法を使って求めることはできたと思うのですが、 そのあとをどうやって解けばいいのか分かりません。 詳しい解説をよろしくお願いします。

  • 漸化式と極限

    数列{An}は0<A1<3、A〔n+1〕=1+√1+Anを満たすものとする。この時次のことを示せ。 (1)0<An<3(n=1、2、3・・・) (2)3-An<(1/3)^n-1(3-A1) (3)limAn=3 n→+∞ 数学的帰納法を使って解くのでしょうか?どの問題でも良いです。どなたか解き方を教えて下さい。

  • 漸化式の問題を教えてください・・・

    An+1、Bn+1、Anは それぞれAのn+1番目、Bのn+1番目、Aのn+1番目という意味です。(汗 数列{An}、{Bn}が A1=6 B1=1 An+1=An +3Bn Bn+1=2An +2Bn で定められている。 2An +3Bnをnであらわせ。 です。  An+1 + Bn+1 =3An + 5Bn なので 2An + 3Bnを導けません…。ほかに方法があるのでしょうか? 解説お願いします。

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。    

  • 漸化式の問題です。

    数Bの漸化式の問題です。 Pを正の定数とする。数列{An}はa1=1 An+1=pAn+p^(-n) (n=1,2,3...) を満たす。 このときAnをpとnを用いて表せ。 帰納法以外で解く方法を教えてください!!

  • 漸化式

    漸化式についてなんですが、 問題;数列{an}の初項から第n項までの和をSnとするとき、関係式Sn=2An+nが成り立っている。 n>=1のとき、Bn=A(n+1)-Anとおく。Bnをnを用いて表せ。 というものなんですが、どう変形したりしてもnで表せません。 答えはBn=-2^nなのですが、途中式が解法として載ってないのでよく分かりません。 ご解答お願いします。

  • 漸化式の問題です^^;

    問題;各項が正の数である数列{a[n]}は,a[1]=t,a[n+1]=(1/2)*(a[n])^2+1/4で定義されている。またxの2次方程式 x=(1/2)*(x^2)+1/4の2解をp,qとする。p<t<qであるとき,以下の問いに答えよ。 (1)p,qの値を求めよ。 (2)任意の自然数nについて,不等式p≦a[n}≦tが成り立つことを示せ。 (3)lim[n→∞](a[n])を求めよ。 【自分の解答】 (1)は普通に2次方程式解いて、できました。 (2)も数学的帰納法を用いて一応できました。 (3)が全然わかりません…。 はさみうちの原理を用いるのだろうという予想はつくのですが、使い方がいまいちわからなくて^^; どなたか教えてください^^w よろしくお願いします。(・∀・)

  • 数学の問題の解説お願いします。

    シニア数学演習 317 自然数nに対して、正の整数an,bnを(3+√2)^n=an+bn√2によって定める。 (1)a1,b1とa2,b2を求めよ。 (2)an+1,bn+1をan,bnを用いて表せ。 (3)nが奇数のとき、an,bnはともに奇数であって、   nが偶数のとき、anは奇数で、bnは偶数であることを数学的帰納法によって示せ。 解答 (1)a1=3,b1=1,a2=11,b2=6 (2)an+1=3an+2bn,bn+1=an+3bn (3)(1)kara,n=1,2のとき命題は成り立つ。   n=2k-1,2kのとき a2k-1=2h-1,b2k-1=2i-1,a2k=2j-1,b2k=2l (h,i,j,lは自然数)であるとして、   a2k+1,b2k+1,a2(k+1),b2(k+1)の偶数を調べる。 数学的帰納法の箇所を詳しく、 解説していただけると幸いです。 よろしくお願いします。