• ベストアンサー

無限集合に関することです。

無限集合に関することです。 自然数全体を可算無限個の互いに交わらない集合A1,A2,A3・・・(どのAkも可算無限集合)の和として表わされることを示したいのですがどうすれば良いですか? 可算無限集合は自然数全体の集合との間に1対1対応の関係がある集合のことなのに、自然数全体を互いに交わらない集合で示せるのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

一例: 2^n で割り切れて、2^(n+1) では割り切れない自然数の集合を A_n とする。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「どうすればいいか」と言われたら「そのような具体例を示せばいい」と答えてみよう. 自然数N の真部分集合 X で, X と N-X が 1対1 の対応を持つようなものを 1つ見付ければ実は終わりだが.

関連するQ&A

  • 可能無限と実無限

    可能無限と実無限って何ですか? このカテゴリで合ってますか? 自然数全体という集合が存在すること関係ありますか? 集合の濃度と関係ありますか(可算無限の友達ですか)? 実数直線の両端にくっついてる「±∞」と関係ありますか? 無限大超実数(NSA)と関係ありますか? 数学科の大学生に教える感じで、お願いします。

  • 可算無限集合について。

    aを任意の有理数としたとき、0<a<1を満たすaの集合って可算無限集合ですか?

  • 可算無限集合と非可算無限集合の違いが分かりません。

    例えば、こういう問題のときそれぞれ可算無限集合と非可算無限集合のうちどっちですか? (1)0≦x≦1を満たす実数x (2)任意の自然数N (3)任意の実数R 回答よろしくお願いします。

  • 有理数集合の濃度は非可算?!

    有理数集合の濃度は非可算?! 有理数集合Qの濃度は可算ですが、以下のように考えたところQ(の部分集合)が非可算無限集合になってしまいました。 どこが誤りかご教授願います。 正の有理数は素数のベキを用いて 2^α×3^β×…(α,β,…∈Z) で一意的に表される。 素数の個数は可算無限個なので Q+とZの可算無限個の直積が一対一対応する。 このときZも可算無限集合なので、可算無限集合の可算無限直積で非可算無限集合になる。 よってQ+は非可算無限集合である。

  • 集合の濃度に関する質問です

    可算無限集合Aの濃度をα_0(アレフ0) R^nの濃度をα_1(アレフ1) (nは自然数) Aの冪集合の濃度を2^α_0(2のアレフ0乗?) ※ヘブライ語のアレフの代わりに、αを使って記述してます。 なので以下αはアレフと読むことにします。 このとき (1)α_0よりα_1のほうが"大きい"こと (2)α_0より2^α_0のほうが"大きい"こと の2つはわかったのですが、α_1と2^α_0ではどちらが大きいのですか? それとも2^α_0=α_1なのでしょうか? 私の記憶では、α_1はα_0の次に"大きい"濃度と定義されていたような気がしますが・・それだとα_0より大きくα_1より小さい濃度は存在してはいけないことになりませんか?(つまり、α_1>2^α_0の可能性はない) 来年度に数学科2年となる身なので、あまり高度な知識は持ち合わせていないです・・。すいません。 どなたか詳しい方がいらっしゃいましたら回答よろしくお願いします。 [補足] (1)については Aが可算(自然数全体の集合Nとの間に1対1かつontoな写像ができる)である一方で、Rは対角線論法により非可算なので、α_0よりα_1のほうが"大きい"としました。(RとR^nの濃度が等しいことの証明は省略します) (2)については Aの冪集合の濃度、つまり元の個数を、Aの各元を含むか含まないかを1と2に対応させることで、小数0.122111222121122・・・・・の総数へと帰着し、あとはこの小数全体に対して対角線論法を用いることで、α_0より2^α_0のほうが"大きい"としました。 「Aの各元を含むか含まないかを1と2に対応させる」とは、 たとえば、A={1,2}であればAの冪集合の濃度(個数)は2^2=4個ですが、これを 0,22⇔Φ(空集合) 0,12⇔{1} 0,21⇔{2} 0,22⇔{1,2} というように小数に対応させるということです。 "大きい"という言葉の定義をしてないのでこの表現が曖昧かもしれませんが、上記のようにして"大きい"かどうかを判断しました。

  • 集合は有限集合と無限集合だけですか?

    有限集合の元の数を考えるとき、 「いかなる有限集合よりも元の数が多い有限集合は存在しない」------(A) ことがわかります。一番大きな基数の有限集合が存在しないと言い換えても良いですね。 ところがここに無限集合の概念を導入すると 「いかなる基数の有限集合よりも大きい集合として無限集合がある」---(A’) ここで「大きい」とは二つの集合の元を対応させて行くと、「大きい」方の元が余ることを言います。 ここでは、“超有限集合”=無限集合という関係が成り立ちます。 さて、公理的集合論の公理により、無限集合Rから常にPower(R)が作れるので、 「いかなる無限集合よりも濃度の数が多い無限集合は存在しない」------(B) が成立しました。 一番大きな濃度の無限集合が存在しないと言い換えても良いですね。 ここで、有限、無限に続く第三の概念として、“超無限集合”=寿限無集合(仮名)という概念を導入します。 すると、(A)に対して(A’)が成り立ったように、(B)に対して(B’)が成り立ちます。 「いかなる濃度の無限集合よりも大きい集合として寿限無集合がある」---(B’) 質問1:このような寿限無集合はZFC公理系で無矛盾に定義できますか? 質問2:集合の種類は有限と無限の二種類でしたが、第三の概念を導入すると、無限集合では成り立たないが寿限無集合の世界だけで成り立つ定理も発見できると思うのですが、このような概念の拡張をした数学者はいましたか? 質問3:有限と無限以外に第三の概念を導入することが無意味であると立証できますか?

  • 無限集合の定義で

    ∃f:全単射 such that f:A→B (但し、BはAの真部分集合) の時、Aを無限集合と言うのがデデキントの無限集合の定義だと思いますが 非可算集合の時にも(例えば実数体)このような全単射写像はするのでしょうか?

  • 可算無限についてお願いします

    集合Xが有限集合の時、 ∪{Xの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…|X|) は、Xのべき集合(2^X)と同じものですよね。 でも集合Xが有限集合ではなく、自然数の集合Nであった場合、 ∪{Nの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…) は可算無限であり、Nのべき集合(2^N)は非可算無限だと聞きましたが、 その違いはいったいなぜ起こるのですか? ※ 集合Y(≠∅ )に対し f:Y→2^Y となる全射が存在しないので、X=Nとすることで2^Nが非可算である事は理解しています。

  • 和集合と濃度の関係について

    こんにちは。 集合論の本を読んでいて、わからないところがあります。お力をお貸しください。 わからないところは、ベキ集合のベキを無限にとることによって、無限濃度の可算増加列が得られるが、その可算列の先のさらに大きな濃度の集合Mをとることができるというところです。 自然数の集合Nのベキ集合をB^1(N)とし、そのベキ集合のベキ集合をB^2(N)とすれば、上述の無限濃度の増加列が、「|N|<|B^1(N)|<|B^2(N)|<…<|B^n(N)|<…」として得られます。 このとき、M=⋃(n=1から∞)B^n(N)とおけば、「|B^n(N)|<|M|」が導かれるというのです。 私の疑問は、「n=1から∞」までのB^n(N)の和集合の濃度が、本当に|B^n(N)|を超えるのか?というところです。 といいますのも、アレフにアレフゼロを足してもアレフのままであるように、和集合が単純にB^n(N)より大きくなるとは言えないんじゃないか?と思うからです。 この論理の根拠は(すなわち和集合と濃度の関係についての上述の論証の根拠は)どのようなものなのでしょうか? アドバイスお願いします。

  • 集合の濃度

    すみません 以下の2題を教えて頂ければ嬉しいです。 ネットの海を彷徨ってみたのですが よくわからなくて… 1. Aを無限集合、Bを要素の数が2以上の有限集合とするとき、AからBへの写像 全体の集合Map(A, B)の濃度は真に大きいことを示せ。 2. 開区間(-1, 1)の可算個の直積(-1, 1)×(-1, 1)×…は(-1,1)と 濃度が等しい。このことを証明しろ。