• ベストアンサー

関数y=cos2x-sinx〔0<=x<2〕の最大値は8/9で、最小値

関数y=cos2x-sinx〔0<=x<2〕の最大値は8/9で、最小値は-2である。与えられた実数aに対して方程式cos2x-sinx=a〔0<=x<2Π〕の解が4こ存在するのは*<a<*のときである。*の部分の解説がわかるかたおねがいします。回答は0<a<8/9です。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

いずれにしても、置き換えが必要になる。 sinx=t とすると、|t|≦1 。条件式は、1-2t^2-t=a と変形できる。 ここで先に説明しとくが、置き換えた時に、xとtの対応を考えなければならない。三角関数で、置き換えた時は、常に元の変数と置き換えた変数の対応関係に注意が必要。 例えば、sinx=t=1の時は、x=π/2。sinx=t=0の時は、0、π 。sinx=t=1/2の時は、x=π/6、5π/6。sinx=t=-1の時は、x=3π/2、sinx=t=-1/2の時は、x=7π/6、11π/6のようになる。 つまり、0≦x<2πの時 t=±1の時は、xとtの対応は1対1。それ以外では、xとtの対応は1対2となるから、題意を満たすには、tが |t|<1の範囲に異なる2個の実数解を持つと良い。 y=1-2t^2-t=aとして、グラフを考えよう。 y=1-2t^2-tと y=a (x軸に平行な直線)を|t|<1で考えると、(実際にグラフを書いてみる) y=1-2t^2-tと y=a が|t|<1で異なる2つの交点を持つのは、0<a<9/8 であるのは、ほとんど自明。

その他の回答 (1)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

s = sin x と置くと、y = 1 - 2(sの2乗) - s です。 y = a に対応する s は、0 ~ 2 個と判ります。 s の変域は -1 ≦ s ≦ 1 であり、 s = ±1 に対しては各々 1 個、 -1 < s < 1 に対しては各々 2 個 の x が対応しますから、x が 4 個になる条件は、 s が -1 < s < 1 の範囲に 2 個になる条件と 同じです。 これで、二次方程式の解の分離問題になりました。 sy平面上にグラフを書いて、 放物線と直線の交点が -1 < s < 1 の範囲に 2 個 になるように、a の範囲を決めればよい。

関連するQ&A

  • 0≦x≦2πのとき、関数y=cos2x-2sinx

    0≦x≦2πのとき、関数y=cos2x-2sinx-1の最大値と最小値を求めよ。 また、そのときのxの値を求めよ。 の問題がわかりません(-。-; どなたか教えてください(>人<;)

  • 数IIの三角関数の問題

    数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。

  • メジアンの問題が分かりません

    関数y=cos2x-sinx(0≦x<2π)の最大値と最小値を求めよ。 与えられた実数aに対して、方程式   cos2x-sinx=a(0≦x<2π)・・・・(1) の解が4個存在するのは(  )<a<(  )のときである。 また、a=(  )のときに限り、(1)の解は3個存在する。 という問題なのですが、最大値、最小値は平方完成をして求めるというのは分かりました。 ですが、aの範囲とaの値の求め方がまったく分かりません。

  • y=cos(x+7π/18)+cos(x+π/18)の最大値と最小値、

    y=cos(x+7π/18)+cos(x+π/18)の最大値と最小値、そのときのxの値を求めよ。ただし0≦x<2πとする。という問題で 和を積に直す公式、cosA+cosB=2cos(A+B)/2*cos(A-B)/2という公式を使用して解くのかと思ったのですが A=α+β、B=α-βという場合のみ適用できるものですよね?だとしたらどのようにして解くのですか?どなたか教えていただけないでしょうか?

  • 2次関数の最大・最小

    問: 次の条件に適するように、定数aの値を求めよ。 (1)関数y=x^2-4x+a (1<=x<=5)の最大値が6である。 (2)関数y=-x^2+3x+a (-3<=x<=1)の最大値が4である。 (3)関数y=-x^2-4x+aの最大値が、関数y=x^2-4xの最小値と一致する。 答: (1)a=1 (2)a=2 (3)a=-8 解説して下さい!

  • 2次関数の最大・最小

    2次関数の最大・最小 aが実数として、a<=x<=a+2で定義される関数f(x)=x^2-2x+3がある。この関数の最大値、最小値をそれぞれM(a),m(a)とするとき、関数b=M(a),b=m(a)のグラフをab平面に(別々に)書け。 最大・最小となる候補を利用 y=d(x-p)^2+qのグラフが下に凸の場合、 ・区間α<=x<=βにおける最小値は、x=pが区間内であれば、頂点のy座標q そうでなければ、区間の端点でのf(α),f(β)のうち小さいほう ・区間α<=x<=βにおける最大値は、区間の端点での値f(α),f(β)のうちの大きいほう である。結局、「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるから、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。 教えてほしいところ 「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるのは理解できます。しかし、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。という部分が理解できません。 何故、たどったものがそれぞれ最大値または最小値のグラフだといえるんですか?? 論理的に教えてください

  • 最大値と最小値の求めかた

    0≦x≦πにおいて、関数f(x)=sin2x+a(sinx+cosx)の最大値、最小値を求める問題です。 aは正の定数とします。 f'(x)=2cos2x+a(cosx-sinx) =2(cos^2x -sin^2x)+a(cosx-sinx) =2(cos-sinx)(cosx+sinx)+a(cosx-sinx) =(cosx-sinx)(2cosx+2sinx+a) までは分かりました。 sinx+cosx=√2sin(x+45) sinx-cosx=√2sin(x-45) ですが、 ・cosx-sinxはどのように考えればいいのですか? (2cosx+2sinx+a) は(2√2sin(x+1/4π)+a)と表すことはできましたが cosx-sinxがわかりません。 この後どのように考えればいいのでしょうか?

  • 二次関数でyの最大値、最小値の求め方。

    aを定数とするとき、 xの二次関数 y=x^2 - 2ax - 2x + a^2 + 2a について、区間 0 ≦ x ≦ 2 におけるyの最小値、最大値をaで表しなさい。 因数分解をして、 y = { x - (a+1) }^2 -1 となって、x軸=a+1 となったのですが、 ここからが分かりません。 解答は a+1≦1のとき、x=2で最大値a^2-2a a+1〉1のとき、x=0で最大値a^2+a とありますが、なぜa+1≦1のときと判断出来るのでしょうか。 まだx=0を式に当てはめればa^2+aはでてくるのでしょうか。 宜しくお願いします。

  • x,、yの対称式と最大・最小

    実数x,yがx^2+xy+y^2=27を満たすとき、x+y+xyの最大値・最小値を求めるという問題で、 x+y=u xy=v とおいてu^2-v=27…(1)とu+v=k…(2)とおいてkの最大値・最小値を求めるという問題におきかえて最小値は(2)が(1)に接するときであるところまではいいのですが、最大値は(2)がx,yの実数条件u^2-4v≧0の=0のときの放物線に接するときではないのですか? 答えは15となっていたので、何か考え方が違うのでしょうか? どなたか正しい解法と、それを発想するコツやポイントのようなものを教えてください。

  • 二次関数の最大と最小

    今晩は 参考書の説明ではよく分からないので教えてください。 ---------------------------------------------------------------------- 例題: 二次関数y=x^2-2x+2のa≦x≦a+2に於ける最大値を求めよ ---------------------------------------------------------------------- 解説: 下に凸型のグラフでの最大値を求める問題で、区間の両端が決め手となる。 関数をy=f(x)とおくと、f(a)=f(a+2)を満たすaの値が、場合分けの境界値になる y=x^2-2x+2=(x-1)^2+1 xの変域a≦x≦a+2の幅は2で一定 f(x)=x^2-2x+2とおくと f(a)=a^2-2a+2 f(a+2)=a^2+2a+2 f(a)=f(a+2)とすると、a=0 よって、 a<0のとき x=aで最大値a^2-2a+2をとる 0≦aのとき x=a+2で最大値a^2+2a+2をとる ---------------------------------------------------------------------- このようにありました。 ですが、f(a)=f(a+2)とする意味が全然分かりません。 xの範囲の最大値の時の関数と最小値の時の関数、つまり区間の両端を等式で 結ぶことがどうして答えに繋がるのか見当が付きません。 何故区間内の最大値/最小値を求めるときに、区間の最小値の時の関数と最大 値の時の関数を等しくするのですか? 宜敷御願い致します