なぜ帯分数を先に教えるのか
別質問で、帯分数の加減を、仮分数に直してから行うか、整数部分と分数部分に分けて行うかという質問をした者です。中1生の親です。
回答にお礼を書いていて、私自身の中学時代の記憶が蘇ってきて、掲題の質問となりました。
私自身の経験でも、小学校では答えが仮分数になったら極力帯分数に直せ等、帯分数重視だったのに、中学では仮分数で良いとなって行きましたが、子供を見ていると今もその点は概ね変わっていないようです。
ここで、中学時代に苦手だった数学を得意科目にしてくれた恩師の言葉を思い出したのですが、要約すると、
小学校では分数を小数は同じと習ってきたかもしれないが、意義が違う。分数は除法の計算過程が示されていて、小数は計算結果の表示だと考えろ。その意味で、分数の本質は除法である。帯分数にすると何を何で割ったのか一目瞭然でなくなる。だからこれからは仮分数しか考える必要はない。
というもの。
それまで、分数・小数・演算がバラバラに記憶されていたのが、すっきり一つに纏まった思いでした。特に分数=除法というのは、小学校でもいわれるものの、本当にストンと落ちたのは上の説明からでした。
そこで...、
未だに小学校では帯分数中心、中学校以降は仮分数中心で教えているのはなぜなんでしょうか。確かに、帯分数は整数部分で大体どれくらいの数なのかが示されるので具体的なイメージを持ちやすいメリットはありますが、逆に除法との繋がりが見えにくくなるデメリットもあるように思う次第。互除法などでは帯分数を使いますが、それ以外では帯分数でなくては、という場面に出会ったことがありません。
大学時代に、友人と塾を作って(私は英語専門でしたが)一部数学も見た際、分数=除法というのが、理解はしていても身についていない生徒はとても多かったこともあっての質問です。
宜しくお願いします。