• ベストアンサー
  • 困ってます

中学3年生の証明問題ができずにずっと悩んでいます

中学3年生の証明問題ができずにずっと悩んでいます  正方形△ABCと△ACDがあり辺CD上に任意の点Eをとる  線分AEを引く  点Bから点Eを通る直線と辺ADの延長線との交点を点Fとする  △ACE∽△ACFであることを証明せよ  というような問題です  今家族で考えてもわかりませんでした  どなたか解答を教えてください

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数52
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • nag0720
  • ベストアンサー率58% (1093/1860)

線分ACと線分BEとの交点をGとする。 △AGF∽△CGBなので、AF:BC=AG:CG △AGB∽△CGEなので、AG:CG=AB:CE よって AF:AC=AF:BC=AB:CE=AC:CE 一方、 角FAC=角ACE=60° 2辺の比とその挟む角が等しい

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます

関連するQ&A

  • 三角形の相似

    図のように.∠ACB=90°の直角三角形ABCがある. 辺AB上に点D.辺BC上に点Eがあって.AD=DE.DE⊥BCである.  また.点Cから辺ABに垂直CFを引き.線分AEとCFの交点をGとする. (1)△AFGと△ACEが相似であることを証明してください (2)AB=9cm.AD=4cmのとき.CGの長さを求めてください 解けなく困っています

  • 中学数学の図形の問題です。

    数学の図形の問題がわかりません。教えてください。よろしくお願いいたします。 図のようにAB=6cm、BC=9cmの長方形ABCDがある。辺ADの上側に点Eを、AB=AE、AD=DEとなるようにとる。また、点Eから辺ADにひいた垂線と辺ADとの交点をFとし、点Dから線分AEにひいた垂線と線分AEとの交点をGとする。点Hは線分CEと辺ADとの交点である。 このとき次の問いに答えなさい。 ・点Eと直線CDとの距離を求めなさい。 ・線分DHの長さは線分FHの長さの何倍か求めなさい。

  • 証明

    AD//BCである台形ABCDにおいて、対角線ACとBDの交点Pとする。また、点Pを通り、辺BCに平行な直線lを引き、辺AB、CDとの交点をそれぞれE,Fとする。 このとき、(1/AD)+(1/BC)=(2/EF)を証明する問題で。        A-----------D / \     /         \ /           \      /           \     B-------------------------C どのように考えるか分からないのでこの書き込みは消されてしまうかもしれませんが、よろしくお願いします。 この問題をまず解くには ・AE:EB=AD:BC ・DF:FC=AD:BC を考えるそうですがこの比の作り方(考え方がよくわかりません。) まとめると、 Pはこの図の中心点。 点Pを通るよく線はl ABとDCで交わった直線lをE,Fと置く。

その他の回答 (1)

  • 回答No.1
  • sak_sak
  • ベストアンサー率20% (112/548)

>正方形△ABCと△ACDがあり これだと解けないと思いますよ。

共感・感謝の気持ちを伝えよう!

質問者からの補足

すいません正三角形でした・・・

関連するQ&A

  • 数学「図形の性質」

    ∠A=30°、∠B=90°、BC=1である直角三角形ABCがある。辺AB上に∠CDB=45°となるように点Dをとる。また直線ABと点Aで接し、点Cを通る円と直線CDの交点をEとする。 (1)線分ADの長さを求めよ。また、∠DAEを求めよ。 (2)線分AEの長さを求めよ。 (3)弦ACに関して、点Eと反対側の弧上に点Pをとる。△ACPの面積の最大値を求めよ。 求め方がわかりません。 三平方の定理を使ってADを求めたのですが、間違っているような気がします。 解説よろしくお願いします。

  • 数学の三角比の問題です。

    AB=3、∠A=60°の△ABCがあり、△ABCの外接円の半径は√39/3である。 (1)辺BCの長さを求めよ。 (2)辺ACの長さを求めよ。また、tanBの値を求めよ。 (3)直線BC上に∠BAD=90°になるように点Dをとる。線分ADの長さを求めよ。 また、線分ACを折り目として、△ACDを折り曲げ、平面ABCと平面ACDが垂直になるようにする。 折り曲げた後の点Dに対して、線分BDの長さを求めよ。 宜しくお願いします。

  • 図形の証明をしてください

    「正方形ABCDで、線分ADに対してAおよびDから正方形内にそれぞれ15°の直線を引き、たがいの交点をPとする。 このとき三角形PBCが正3角形であることを、証明せよ。」  一度友人に教わったのですが忘れてしまいました。もう一度聞くのもしゃくにさわるし。。。お願いします。

  • 相似と合同

    ふたつ質問があります。どちらもあと一つ条件が見つけられません。よければ探す過程を教えてください。 (1)△abcの頂点aから辺bcにひいた垂線をadとする。adを直径とする円oと辺ab・acとの交点をそれぞれe・fとし、adとefの交点をgとするする時。→△afeと△abcの相似条件で分かったのは∠a(共通)です (2)円oに内接する二等辺三角形abc(ab=ac)があり、直線mnは点cで円oの接線である。また点bを通るmnに平行な直線が、acと円oに交わる点をそれぞれd・eとしaとe、cとeを結ぶ。→△abdと△aceの合同条件で、分かったのは、ab=acと∠abe=ace(弧aeの円周角)です

  • 平面図形の問題

    図のように、∠A=30°、∠B=90°、BC=1である直角三角形ABCがある。辺AB上に∠CDB=45°となるように点Dをとる。また直線ABと点Aで接し、点Cを通る円と直線CDの交点をEとする。 (1)線分ADの長さを求めよ。また、∠DAEを求めよ。 (2)線分AEの長さを求めよ。 (3)弦ACに関して、点Eと反対側の弧上に点Pをとる。    △ACPの面積の最大値を求めよ。 と言う問題があるのですが、(1)の1つ目の問題しか解けませんでした。分かったものだけでもいいので、お待ちしております。

  • この証明問題を教えてください。

    この証明問題が解けないのでどなたか教えてください。 (問題) ・画像のように、正方形ABCDの辺CD上に点Eをとり、 辺BCの延長線上にCF=CEとなる点Fをとる。 また、BEの延長とDFとの交点をGとする。 このとき∠DEG=∠DFCであることを証明しなさい。

  • 数学の証明

    辺ABと直線との交点をE、辺CDと直線との交点をQとする。 四角形ABCDの対角線AC、BDが点Pで直交するとき、 円周角∠APD = ∠DPC = ∠CPB = ∠BPA = 90°(1) 弧AB = 弧BC = 弧CD = 弧DA (2) 弦AB = 弦BC = 弦CD = 弦DA (3) 以上で四角形ABCDは正方形であると証明された。 次に点Pを通り、辺ABに垂直な直線を引く。 (1)(2)(3)より AE = BE CQ = DQ AE = CQ BE = DQ AE = DQ BE = CQ よってPを通って辺ABに垂直な直線は辺CDを2等分する。 よって証明された。 これで証明できているのかがわかりません。 教えて頂けないでしょうか。

  • 図形の証明なのですが

    「正方形ABCDで、線分ADに対してAおよびDから正方形内にそれぞれ15°の直線を引き 、たがいの交点をPとする。 このとき三角形PBCが正3角形であることを、証明せよ。」 _________________________________________________________________________________________________________________ (1)正方形ABCDに正三角形ADRをくっつける(ADは共有) AB=AD=ARより三角形ABRは二等辺三角形。角ABR=角ARB・・・・・・ (2)線分ABに対してAおよびBから正方形内にそれぞれ15°の直線 を引き、たがいの交点をSとする。 (中略) DPSBCは正12角形の1/4になるので, 三角形PBCが正3角形 (1)(2)は前回ここで良回答をいただいたきました。 これ以外で三角関数を使わない証明があれば教えてください。

  • 数学の面積の問題

    数学の面積の問題です。解説もよろしくお願いします。 下の図で、三角形ABCの3つの頂点A、B、Cは円周上にあり、AB>AC、∠ABCは90°以上の角である。 頂点Aを含まない弧BC上に2点D、EをB、D、E、Cの順に並ぶようにとる。4点B、D、E、Cは互いに一致しない。 頂点Aと点D、頂点Aと点E、点Dと点Eをそれぞれ結び、辺BCと線分ADの交点を点F、辺BCと線分AEの交点をGとする。 点Fが線分ADの中点、点Gが線分AEの中点で、辺BCが円の直径、BC=4cm、三角形ABCの面積と三角形ADEの面積の比が2:3のとき、三角形AFGの面積は何cm2か。

  • 証明を教えてください!

    図の△ABCは、AB=ACの直角二等辺三角形である。辺BC上に点Dをとり図のように、AD=AEとなる直角二等辺三角形ADEをつくり、DEとACとの交点をFとする。 このとき「BD=CE」であることを証明しなさい。 という問題です。教えてください!

専門家に質問してみよう