ベストアンサー 次の積分をお願いします。複素変数関数の微分。コーシーの定理 2010/08/01 17:52 次の積分をお願いします。複素変数関数の微分。コーシーの定理 下の画像の積分を求めてください。 全く分かりません。よろしくお願いします。 画像を拡大する みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2010/08/01 23:45 回答No.2 1/(z^2 - 2z) は、C で囲まれる領域 |z|≦1 の中に 1 個の特異点 z=0 を持ち、 z=0 は 1 位の極である。 よって、積分範囲内での 1/(z^2 - 2z) の留数は、 Res[z=0] 1/(z^2 - 2z) = lim[z→0] z/(z^2 - 2z) = -1/2。 留数定理により、 ∫[on C] dz/(z^2 - 2z) = (2πi) Res[z=0] 1/(z^2 - 2z) = -πi。 留数定理を表立って使わず、コーシーの積分定理で行くなら、 1/(z^2 - 2z) = (-1/2)/z + (1/2)/(z - 2) と部分分数分解して、 ∫[on C] dz/(z^2 - 2z) = (-1/2) ∫[on C] dz/z + (1/2) ∫[on C] dz/(z - 2)。 コーシーの定理から ∫[on C] dz/(z - 2) = 0 が出るから、 ∫[on C] dz/z = 2πi を知っていれば ok。 これは、exp z が周期 2πi を持つことと同じなのだった。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) alice_44 ベストアンサー率44% (2109/4759) 2010/08/01 18:06 回答No.1 留数定理でやれば? 基本的な考え方は、 コーシーの積分定理により、C に拘らなくても、 z=0 の近傍を小っさい単純閉曲線で周回すればいいから、 その範囲で 1/(z^2-2z) ≒ 1/(-2z)。 あとは、∫dz/z がどんなものか解ってればね。 その話を精密に書いたものが、いわゆる「留数定理」。 http://ja.wikipedia.org/wiki/%E7%95%99%E6%95%B0 質問者 補足 2010/08/01 18:13 すみませんが解いてもらえますか? さっぱり分かりません。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 複素積分(コーシーの積分定理)について質問です zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。 複素関数について 自分は大学で複素関数を習っています。 コーシーの積分の定理でわからないことがあります。 Cの範囲が0~2πのときは∳f(z)=0となるのはわかるのですが、Cの範囲が0~πになったり、 0~π/2になったりするとまったくわかりません。 こういったときはどうやって積分の値を出せばよいのでしょうか? 例などもあるとうれしいです。 よろしくお願いします。 複素関数(コーシーの積分定理) 複素関数の問題について質問です。 以下の問題について解いてみたのですが問題集の答えと合わずに苦しんでおります。 (1) I1=∫Cdz[1/z^2(z-1)] C:|z|=2 (2) I2=∫Cdz[1/z^3-1] C:(x^2)/2 + (y^2)/3=1 (z=x+iy) 申し訳ありませんが間違えをご指摘いただけませんでしょうか? よろしくお願いしますm(_ _)m 解答は (1): 2πi (2): 2πi/3 となっています。 (1)部分分数に分解して I1=∫Cdz[-1/(z) -1/(z^2) + 1/(z-1)] ここでf(z)=1とおけばf'(z)=0よりコーシーの積分定理から I1=2πi[-f(0)-f'(0)+f(1)]=2πi[-1-0+1]=0 ■ (2)部分分数に分解して ω1=(-1+i√3)/2, ω2=(-1-i√3)/2 とおくと I2=∫Cdz[1/3{1/(z-1) +ω1/(z-ω1)+ω2/(1-ω2)] f(z)=1とおけば I2=2πi[f(1)+ω1*f(ω1)+ω2*f(ω2)] =2πi[1+ω1+ω2] =2πi[1-1] =0 ■ 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 複素関数の微分不可能性について! 閲覧ありがとうございます。 複素関数f(z)=Re zについて、どこでも微分不可能なことを示せ。 という問題なのですが、教科書に答えが載っておらずわかりません。 コーシーの方程式はまだ習っていないので、別の方法で解きたいのですが… どなたか、解答していただけるとありがたいです! よろしくお願いします。 実関数のテーラー展開と複素関数のテーラー展開の違い 実関数のテーラー展開はテーラーの定理から、複素関数のテーラー展開はコーシーの積分公式とグルサの定理から導かれますが、複素関数のテーラー展開で、実関数のときのようなラグランジュの剰余項がないのはなぜですか? 線分長無限大でのコーシーの積分定理 コーシーの積分定理で積分曲線の長さが有限の場合はわかりますが、 線分長が有限でない場合で、積分が収束する場合にもコーシーの積分 定理が成り立つのでしょうか?成り立つとするとどういう証明に なりますか。 コーシーの積分定理に関する問題 現在コーシーの積分定理に関する問題をやっています。教科書や参考書・ウエブサイトなどを見ているのですが、あまり理解できません。もしよければ教えていただけないでしょうか。現在やっている問題は画像のほうに載せます。 複素微分の存在→正則の証明 複素関数fの複素微分が存在するなら、その関数は正則であるということを証明するプロセスは複素関数論の教科書にはすべて載っていると思います。 私の本では複素微分df/dzにおいてdz=h+ikとして、k=0でh→0としたものと、h=0としてk→0としたものが一致しなければならないということから正則であることを誘導しています。複素微分による2つの特殊な例を適用したように見えるのですが、これで演繹的に証明したことになるのでしょうか。 これに関連して、正則とはコーシーリーマンの関係が成立することであり、それが正則の定義と考えていいのでしょうか。つまり正則ならコーシーリーマンの関係式が成立することを証明せよ、というようなことはないと思っていいでしょうか。 なお、正則→複素微分の存在という証明が別途出てきますが、こちらは平均値の定理とコーシーリーマンの式で演繹的に証明できたような印象なのですが。 複素積分を使わずに解ける 複素関数の勉強をしていて、疑問に思ったことがあります。 次の定積分を求めよ、という問題です。 ∫(from 0 to ∞)exp(-x^2) cos2bx dx (bは定数) この問題は、複素平面上の長方形状の積分路に沿って積分して答えが出せたのですが、以下のようなやり方をしてみました。 まず、求める積分はbの関数とみなせるので、I(b)とおきます。 次にI(b)をbで微分します。被積分関数をbで偏微分し、部分積分を使うと、 dI(b)/db = -2bI(b) となります。これはbの微分方程式になっているので、これを解くと、 I(b) = Aexp(-b^2) (Aは定数) となります。元の式にb=0を代入すれば、 I(0) = sqrt(π)/2 となるので、 I(b) = sqrt(π)exp(-b^2)/2 という結果になります。 なんだか複素積分をするよりも簡単に答えが出せたのですが、このやり方でもよいのでしょうか。参考書にはこの方法が載っていなかったのですが。 複素積分 お世話になります。 【問題】 次の関数を示された閉曲線Cに沿って積分せよ。 f(z) = 1 / ( z^(2) + 1 ) C : 原点中心、半径 r > 1 の円周 【解答】 f(z) = 1 / ( z^(2) + 1 )はこの円内で正則でない。 そこでf(z) = 1 / ( z^(2) + 1 )を部分分数展開すると… (解答続く…) 【質問】 関数が正則であるというのは領域内で微分可能であるということはわかっているのですが、なぜこの問題のf(z)は微分不可能なのかわかりません。またこの問題はコーシーの積分定理とどう関係あるのでしょうか。(定理はわかっています) よろしくお願いします。 ※参考URL※ http://next1.msi.sk.shibaurait.ac.jp/MULTIMEDIA/complex/node19.html (このページを使って勉強しています) 複素関数の微分について かなり乱暴な質問だと思いますが、回答をよろしくお願いします。 複素関数f(z)がz。において微分可能であることを示すときに 「zがあらゆる方向からz。に近づいてきても ((f(z)-f(z。))/(z-z。)がある値に近づく」 というくだりがよくわかりません。 2変数関数の偏微分みたいに、方向によって値が違っていても いいような気がしますが、複素関数では同じになるのでしょうか? それとも同じになる時に限って微分可能と定義付けるのでしょうか? コーシーの積分定理 こんにちは。僕は今コーシーの積分定理を勉強しているものです。 コーシーの積分定理を使った問題で、どうしても解法がよくわからない問題があるのでお願いします。 ∫[C] z^3/(z-4)^2dz (C:|z|=2) という問題です。この問題に限らず、分母が2乗の形になっているような問題がわかりません。 他の問題だと、z^3/(z-4)/(z-4)のような形にして、f(ξ)=ξ^3/(ξ-4)として解けるのですが、もちろんこの問題だとf(ξ)の分母が0になってしまい、困ってしまいます。 こういった問題はどのような解法を用いればいいのでしょうか。 お手数ですが、おわかりになる方いらっしゃいましたら、ご教授いただけると幸いです。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム コーシーの積分定理 コーシーの積分定理を用いて 1/(2πi)∫[C] e^z/(z-2)dz (C:|z-2|=1) を計算しろという問題なのですが、考え方がよく分かりません。 どのように計算していけばいいのでしょうか?ご教授お願いします。 複素関数論は何が美しいのか 応用数学としての関数論を勉強中です。飛ばし読みではありますが、複素積分を利用して実関数の積分をするところまでなんとかたどり着きました。 さて、関数論は美しい数学であるということをよく聞かされたのですが、急いで読み過ぎたせいか、関数論の美しさに感動できるところまで至っていません。オイラーの公式から導かれる e^(iπ) + 1 = 0 ・・・・・(#) は、もちろん関数論の本を読む前から知っていましたが、この等式を知ったときの驚きを上回る感動を今のところ感じることができません。 たとえば等角写像などは関数論では美しさはもちろん、おもしろさもさっぱりわかりませんでした。流体力学の本で等角写像を応用したジューコウスキー変換というものを知って、そのおもしろさがようやくわかり、感心もしましたが、感動するところまではいきませんでした(笑)。 また、実関数ではテイラーの定理を経由しないと(剰余項を調べないと)テイラー展開できませんが、複素正則関数はコーシーの積分公式から直接テイラー展開を導けるため、テイラーの定理が複素関数の場合不要になることなど、実におもしろいとは思いましたが、やはり (#) を初めて知ったときのような感動は味わえませんでした。 関数論のどこらあたりを精読すれば、よりおもしろく感じたり、数学美というものを感じることができるでしょうか? どういうことを「美」と感じるかは個人差が大きいとは思いますが・・・・・ 複素微分について 複素関数 f(z) = u(x,y) + iv(x,y) ・・・・・ u≠0、v≠0 は、2つの実数関数 u と v の組で表されるので、実数で微分したり積分したりすることはできると思いますが、 g(z) = u(x,y) ・・・・・ v = 0 h(z) = iv(x,y) ・・・・・ u = 0 は C-R の方程式を満たさないから、h や g を複素数で微分することは不可能なのですよね? つまり、実関数を複素関数の一部と見なしても、実関数を複素数で微分することはできないと考えてよいかということです。 あんまり当たり前のことなのか(笑)、私が持っている2つの複素関数の本にはその類いの説明はありません。 留数定理とコーシーの積分公式・グルサの定理 単刀直入に聞きます。 留数定理で1周線積分が求まります。 では、留数定理が使えれば、コーシーの積分公式・グルサの定理を使う必要はないのでしょうか。 複素積分について コーシーの積分定理によると閉曲線上の積分は積分値ゼロになりますが、例えば |Z|=a上を正の向きに一周する ∫xdz はゼロになりません。 これはどういうことなのでしょう? ∂(1/z)/∂zをコーシーの積分定理を用いて計算 ∂(1/z)/∂zをコーシーの積分定理を用いて計算せよという問題があったのですが、教えてもらえないでしょうか? 複素積分の初歩的な質問 以下のような問題についてなのですが。。。 問 複素平面z上の単連結領域 -1<Imz<1 で、次の z=-1 から 1 までの 定積分を求めよ。 ∫[-1,1]1/(z-i)dz (被積分関数が 1/(z-i),積分範囲が[-1,1]) 僕は実数関数のノリで [log|z-i|]を原始関数としてやり答えが0になってしまったのですが 解答を見ると以下のようにやっています。 積分経路を z-i = √2*exp(iθ) (-3pi/4 <= θ <= -pi/4) としてあとは普通に積分。(答えは(pi*i)/2) つまり -1<Imz<1,-1<=Rez<=1 の範囲で被積分関数は 正則だからコーシーの積分定理より経路を変えても積分値は同じ、 -1から1へまっすぐ積分するのではなく扇形の弧を描くように 積分するということです(と思います)。 で、模範解答のやり方はそれはそれでよく納得できたのですが 僕が最初にやったやり方はなにが不味いのでしょうか。 そもそも原始関数がlog|z-i|がおかしいのでしょうか? この公式(∫f(x)'/f(x) dx = log|f(x)|)は複素数の範囲だと 成り立たない公式なのでしょうか? 複素関数の積分で被積分関数が特異点を持つときは exp(iθ)を絡ませるのが常套手段なのでしょうか? よろしくお願いいたします! 複素関数の周積分の問題です。 問題は次の二つです。 ∫dz/(z-3i) 積分経路は |Z|=π で反時計まわり。 ∫(exp(z)/z)dz 積分経路は |Z|=2で反時計と|Z|=1で時計まわり。 初めの問題はコーシーの積分定理を使えば2πiになるのは、理解できるのですが、積分定理を使わずに与えられた積分経路で積分をしていった所(z(t)=πexp(it)とした。)、[log|πexp(it)-3i|] tの区間0~2π となりこれを計算すると0になってしまいました。なぜ答えが違うのでしょうか。 二番目の問題もコーシーの積分定理を使って二つとも同じ原点を中心とした半径rの円の積分経路に置き換えれば、0になることはすぐわかるのですが、定理を使わずに計算していった所∫iexp(exp(it))dtや∫iexp(2exp(it))dtといった項が出てきてこれが計算できないのです。この問題は大人しく定理を使わなければ解けない問題なのでしょうか。 以上の2点が分からず困っています。どなたかお力をお貸しください。 よろしくお願いします。
補足
すみませんが解いてもらえますか? さっぱり分かりません。