• ベストアンサー

一次元の拡散方程式

一次元の拡散方程式 (1)のように与えられる1次元の拡散方程式で、 境界条件は(2)(3)式を満たす。 Fourier変換は(4)(5)式で定義され、 u(x,t)のFourier変換を(6)式とすると、 U(k,t)は(7)式のように書ける。 このとき、U(k,t)を逆Fourier変換することにより、 u(x,t)の一般解をu(x,0)の積分形で表したいのですが、 どうすればいいか分かりません。 どなたかご教授いただけるとうれしいです。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

Fをフーリエ変換、Gをフーリエ逆変換 (6) u(t,x) = GU(x,t). (7) U(k,t) = U(k,0)exp(κk^2t). 一般に、フーリエ変換と合成積(*)の関係 F(f*g) = F(f)F(g) より f*g = G(F(f)F(g)) ここで、fをGf、gをGgにすると Gf*Gg = G(fg) u(x,t) = GU(x,t) = G[U(k,0)exp(κk^2t)](x,t)より u(x,t) = (G[U(k,0)]*G[exp(κk^2t)])(x,t)  ここからは、正規分布(の特性関数っぽいもの)や、デルタ関数が登場するけど、基本的には計算するだけ。

ishigamin
質問者

お礼

分かりやすいご回答、ありがとうございます。 無事理解できました。 今後も邁進して勉強いたします。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 二次元拡散方程式の一般解が求まりません

    二次元拡散方程式の一般解が求まりません すみません、拡散方程式で解けない問題がありまして、どなたかご教授ください。 u(x,y,t)の位置(x,y)と時間(t)のみに依存する関数があり、 拡散方程式 ∂u/∂t=D*(∂^2u/∂x^2+∂^2u/dy^2)  (Dは定数) (0<x<a , 0<y<b) 境界条件は、u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(a,y,t)=0.0 ,u(x,b,t)=0.0 です。 初期条件は u(x,y,0)=f(x,y) です。 変数分離 u(x,y,t)=X(x)Y(y)T(t) 代入後uで両辺を割る T´/(D*T)=X´´/X+Y´´/Y 後はD*X´´/X=α、D*Y´´/Y=β (α、β、kは定数)ここで,k=-(α+β)とおく。 の3つの微分方程式を解いて初期条件、境界条件を用いて定数を決定します。 X(x)=Acos√αx+Bsin√αx Y(y)=Ccos√βy+Dsin√βy とおいて、境界条件を代入し X(0)=X(a)=0 Y(0)=Y(b)=0 X(a)=Bsin√αa=0 α=(nπ/a)^2 (n=1,2,・・・) Y(b)=Dsin√βb=0 β=(nπ/b)^2 (n=1,2,・・・) 境界条件u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(a,y,t)=0.0 ,u(x,b,t)=0.0がときのものは 一般解を求められました。 次に, 境界条件u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(a,y,t)=1.0 ,u(x,b,t)=0.0のときの一般解を求めたいのですが、上手く出来ません。 X(x)=Acos√αx+Bsin√αx Y(y)=Ccos√βy+Dsin√βy とおいて、境界条件を代入し X(0)=0 X(a)=1 Y(0)=Y(b)=0 X(a)=Bsin√αa=1 Y(b)=Dsin√βb=0 β=(nπ/b)^2 (n=1,2,・・・) X(a)=Bsin√αa=1をどう解けばいいのか分かりません。 ご教授お願いします。

  • 2次元ヘルムホルツ方程式

    2次元ヘルムホルツ方程式 2次元ヘルムホルツ方程式 ∂^2 u/∂x^2 + ∂^2 u/∂y^2 + k^2 u = 0が、 ・周期的境界条件を満たし、 ・いたるところ非負 となるような解uを持つことはあるでしょうか?

  • 二次元拡散方程式の一般解が求まりません

    すみません、拡散方程式で解けない問題がありまして、どなたかご教授ください。 u(x,y,t)の位置(x,y)と時間(t)のみに依存する関数があり、 拡散方程式 du/dt=D*(d^2u/dx^2+d^2u/dy^2)  (dは本来は偏微分のパーシャルdです。Dは定数) 一辺の長さが1.0の正方形を考えています。(0<x<1 , 0<y<1) 境界条件は、u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(1.0,y,t)=0.0 , u(x,1.0,t)=0.0 です。 初期条件は u(x,y,t)=10.0 です。 すみませんができれば解のみではなく方針までお答えいただけると幸いです。よろしくお願いします。

  • 拡散方程式を解いてください!!!

    拡散方程式を解いてください!!! 一次元の半無限体への拡散問題です。 初期の状態は濃度がC(x=0, t=0)=C*(定数)とC(x, t=0)=0(x>0)で、プラス方向に拡散します。 境界条件はlim x→∞ C(x, t)=0です。 お願いします。

  • 無限領域での波動方程式の計算に出てくる偏微分方程式

    波動方程式の計算に出てくる、偏微分方程式の解の計算方法が分かりません。 本から引用します: ここで、弦を伝わる波の問題などで使われる波動方程式 { (∂^2) u(x,t) } / (∂t^2) - c^2 * { (∂^2) u(x,t) } / (∂x^2) = 0 (式7.33) を考えてみよう。ここで、u(x,t)は座標xの位置での時刻tにおける弦の変位を表わし、cは正の定数とする。そして、∞に長い弦を考え(すなわち、-∞<x<∞の範囲で考え)、境界条件は、すべての t>=0 に対して u(x,t)→0 (式7.34) (x→±∞) を満たすとする。つまり、無限遠では波が存在しないとする。更に初期条件は u(x,0) = f(x) { ∂u(x,t) } / ∂t |t=0 = 0 (式7.35) とし、ここでf(x)は x→±∞ で0に近付く絶対可積分な関数であるとする。また、上式の縦棒(|)の後のt=0は、「t=0での偏微分の値」という意味である。(式7.35)のように初期条件として2つの式を与えるのは、(式7.33)がtについて2階の微分方程式だからである。今の場合、xの無限領域での関数u(x,t)を取り扱うので、フーリエ変換を使った解法を用いればよい。 例題 初期条件(式7.35)と境界条件(式7.34)を満たす(式7.33)の解を求めよ。 [解] u(x,t)のxについてのフーリエ変換を F(k,t) = ∫[-∞,∞] u(x,t) e^(-ikx) dx (式7.36) と表す。(式7.33)にe^(-ikx)を掛け、xについて-∞から∞まで積分すると、熱伝導方程式(式7.20)を導いたときと同様な考え方から、 { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 (式7.37) ←質問箇所 を得る。この微分方程式の解は、 F(k,t) = C[1](k) e^(ickt) + C[2](k) e^(-ickt) (式7.38) ←これをどう導いたのかが不明 であることが、代入すれば確かめられる。ここで、C[1](k)、C[2](k)は任意のkの関数で ある。 ・・・以上、引用終わり。 私は偏微分方程式自体、変数分離とかいう方法でサラッとやっただけで、上記の方法は見たことがありません。ネットで検索しましたが、同様の式を見つけることが出来ませんでした。そんな私が敢えて解こうとすると: { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 第2項を右辺に移項する { (∂^2)F(k,t) } / (∂t^2) = - (c^2) * (k^2) * F(k,t) 左辺の(∂t^2)と右辺のF(k,t)を交換する { (∂^2)F(k,t) } / F(k,t) = - (c^2) * (k^2) * (∂t^2) 両辺をtで積分する(もう既に未知の領域…きっと2乗が減って1乗になるのでしょう…) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * ∫(1)(∂t^2) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * t (∂t) + C[1](k) もう一度両辺をtで積分するだろう雰囲気を漂わせたところでやめておきます。 もしかしたらln{F(k,t)}を積分しなければならないのでは、と思ったら思考が停止しました。多分、既に間違っているのでしょう。 …ということで、この偏微分方程式の解き方を教えて下さい。お願いします。

  • 閾値付き拡散方程式

    n次元(1次元限定でも可)拡散方程式 ∂u/∂t = ∇^2 u において、u<σとなったら、u=0という条件をつけます。 0. この方程式は数学的に意味があるでしょうか?   つまり、デルタ関数とか弱解といった分野的に、という意味です。 1. この方程式は解析的に解けるでしょうか? 2. 各種の数値解法を適用した場合、   数値解は格子のスケールに依存しないでしょうか?

  • 拡散方程式について

    一次元の拡散方程式∂P/∂t=D∂^2P/∂x^2で初期条件がP(x,0)=δ(x)のとき、方程式の解はP(x,t)=1/√4πDtexp(-x^2/4Dt)で与えられ、これは分散が2Dtであるようなガウス分布である。「この確率分布に関する物理量Xの平均を<X>=∫∞~-∞ XP(x,t)dxとすると、<x>=0,<x^2>=2Dtとなる」ようなのですが、「」の部分が理解出来きません。どなたか教えてください。

  • 波動方程式

    以下の問題について質問します。 波動方程式∂^2φ/∂t^2=∂^2φ/∂x^2の解で初期条件φ(x,0)=exp(-x^2) φt(x,0)=-xexp(-x^2)を満たすものを求めよ。 与えられた方程式(波動方程式)と初期条件を、それぞれ x についてフーリエ変換する。そうすると t に関して二階の常微分方程式が得られるので、それを解く。最後に、得られた解を x について逆フーリエ変換すれば答が得られるとのことですが初めの方程式(波動方程式)と初期条件を、それぞれ x についてフーリエ変換するという所から躓いています。どなたか途中の計算過程を教えていただけないでしょうか。

  • 拡散方程式の一般解が求まりません

    すみません、拡散方程式で解けない問題がありまして、どなたかご教授ください。 u(y,t)の位置(y)と時間(t)のみに依存する関数があり、 拡散方程式 du/dt=D*(d^2u/dy^2)  (dは本来は偏微分のパーシャルdです。Dは定数) 境界条件は、 u(±h,t)=Ucosωt (h,ωは定数) となっています。これだけの条件では解けないのでしょうか??すみませんができれば解のみではなく方針までお答えいただけると幸いです。よろしくお願いします。

  • 1・2次元の波動方程式

    ∂^2u/∂^t2=c^2∂^2u/∂x^2 を以下の境界条件の下で解け。 (1)x=0でu=0、x=Lでu=0 (2)x=0でu=0、x=Lで∂u/∂x=0 という問題をやっているのですが、この微分方程式の解き方がわかりません。1、2階の線形、非線形微分方程式は習ったのですが、この微分方程式は、左辺はtで微分していて、右辺はxで微分していて、どういうことなのかわかりません。また、これが2次元になった場合はどのようにすればいいのでしょうか?

このQ&Aのポイント
  • 【PX-S5010】のカラーコントロールテクノロジーについて詳しく教えてください。
  • ESPON社のHPに掲載されている「カラーコントロールテクノロジー」はPX-S5010に搭載されている技術でしょうか。
  • PX-S5010のカラーコントロールテクノロジーについて疑問があります。
回答を見る