- ベストアンサー
- 困ってます
oは原点。pはx^2+y^2=4上の点で、(2,0)から(0,2)に動
oは原点。pはx^2+y^2=4上の点で、(2,0)から(0,2)に動く。 opを1:2に内分する点をhとし、hを通ってopに垂直な直線と 放物線y=x^2-13/3との交点で、x座標が正の交点をqとする。 このとき,△opqの面積が最小となるときのqの座標を求めよ。 放物線上の点qを(q,q^2-13/3)とおく。また、円上の点pを (s,t)とおく。直線opはtx-sy=0と表せて、これと点qとの距離を 求めて、この距離が最小になるとき、面積も最小になるが、 この距離|tq-s(q^2-13/3)|の最小値を求められません。 よろしくお願いします。
- 112233445
- お礼率59% (526/889)
- 数学・算数
- 回答数1
- 閲覧数51
- ありがとう数1
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- nag0720
- ベストアンサー率58% (1093/1860)
三角形ohqは直角三角形で、oh=2/3 qh^2=oq^2-oh^2 なので、 qhが最小となるのは、oqが最小となるときです。 oqが最小になるのは、 q^2+(q^2-13/3)^2=(q^2-23/6)^2+49/12 より、 q=√(23/6)のときです。
関連するQ&A
- 二次関数について教えてください。
二次関数放物線について教えて下さい。 :放物線y=x2乗と直線l:y=x+2との交点をP・Qとし、直線lとx軸との交点をRとする。ただし、(Pのx座標)<(Qのx座標)である。 問題(1)△OPQの面積を求めなさい。 問題(2)原点を通る直線mが△OPQの面積を2等分する場合、直線mの式を求めなさい。 初歩的な問題かと思いますがご存知の方是非教えてください。 解説も頂ければ有り難いです。
- 締切済み
- 数学・算数
- 数学の問題なのですが
Oを原点とする座標平面上に、放物線y=ax^2と正方形OABCがある. 2点A、Cはともに放物線上にあり、点Aの座標は(2.2)、点Bの座標は(0.4)である. また.2点B、Cを通る直線を l とし、 l と放物線との交点のうち、Cでない方の交点をDとする. (i) aの値を求めよ (ii) 直線 l の式を求めよ (iii) Dのx座標を t とするとき、t の値を求めよ (2) 直線 l 上に点Pをとる (i) 線分OPが三角形OBDの面積を2等分するときの点Pの座標を求めよ (ii) 三角系ODPの面積が四角形OADCの面積と等しくなるような点Pの座標をすべて求めよ. 解答または解説していただけると泣いて喜びます!!!!!!!!TAT
- 締切済み
- 中学校
- xy平面において、原点Oを通り互いに直交する2直線
xy平面において、原点Oを通り互いに直交する2直線を引き、直線x=-1および直線x=3√3 との交点をそれぞれP、Qとする。 OP+OQの最小値を求めよ。
- ベストアンサー
- 数学・算数
- 放物線と図形の面積
放物線nは、y=1/4x2乗のグラフである。放物線nと直線mの交点をA,Bとする。Aのx座標が-8、Bのx座標が6である。 (1)放物線上の原点0から点Bの間に点Pを取り、三角形APBの面積が70になるようにする。このときの点Pの座標を求めよ。 という問題と (2)傾き2で平行四辺形AOBQの面積を二等分するような直線の式を求めよ。 (点Qは四角形AOBQが平行四辺形になるようにとる) という問題がわかりません。 (1)は、直線ABを底辺として考えるのでしょうか?三平方の定理を使ってABの長さを出しても、その先がわかりません。 (2)はまったく解りません どなたか 助けてください 行き詰ってます! よろしくお願いします
- ベストアンサー
- 数学・算数
- 数学の積分?面積?に関する問題なのですが・・・
数学の積分?面積?に関する問題なのですが・・・ 放物線C:y=x^2上の点A(a, a^2), B(b, b^2) をとる。ただし、b<0<aとする。 (1)放物線Cの点Aにおける接線と点Bにおける接線の交点の座標を求めよ。 (2)放物線Cと直線ABで囲まれる部分の面積Sを求めよ。 (3)三角形OABの面積をTとするとき、T/Sがとりうる値の最大値を求めよ。ただしOは原点(0, 0)である。 積分というものが正直よくわかりません。 なのでどなたか解説お願いします。
- ベストアンサー
- 数学・算数
- 放物線と直線の問題です。
放物線と直線の問題です。 放物線 y=4x^2 ・・・(1) 上に点A(1/2,1) 放物線 y=1/2x^2 ・・・(2) 上に点B(2,2)がある。 直線ABの式 y=2/3x+2/3 ・・・(3) 三角形AOBの面積=三角形TOB-三角形TOA (原点O、直線ABとy軸の交点Tとして)で求めると3/6になりました。 つぎに点Pは(2)上の点で、原点Oと点Bとの間にあるものとする。三角形APBの面積が1/4のとき点Pのx座標を求めろという問題でした。
- ベストアンサー
- 数学・算数
- 高校の数学です。
Oを原点とする座標平面上に、放物線C:y=1/2x^2と、点A(2,11)がある。 2点P(x,y)、Q(u,v)に対して、線分PQを1:2に内分する点がAであるとき (ア)x+u/(イ)=2、(ウ)y+v/(エ)=11 が成り立つ。点QがC上を動くときの点Pの軌跡は、 放物線D:y=(オ)x^2+(カ)x+(キク)/(ケ) である。二つの放物線C、Dの交点をR、Sとする。ただし、x座標の小さい方の交点をRとする。点R、Sのx座標はそれぞれ(コサ)、(シ)であり、点Rにおける放物線Dの接線の方程式は、 y=(ス)x+(セソ)/(タ) である。 Pを放物線D上の点とし、Pのx座標をaとおく。Pからx軸に引いた垂線と放物線Cとの交点をHとする。(コサ)<a<(シ)のとき、△PHRの面積S(a)は、 S(a)=(チツ)/(テ)(a^3-(ト)a^2-(ナ)a-(ニ)) と表される。aが(コサ)<a<(シ)の範囲で変化するとき、S(a)はa=(ヌ)のとき、最大値(ネノ)をとる。 a=(ヌ)のとき、(コサ)≦a≦(ヌ)の範囲で、放物線Dと直線PHおよび直線RHで囲まれた図形の面積は(ハヒフ)/(ヘ)である。 (ア)~(ヘ)の解答をお願い致します。
- 締切済み
- 数学・算数
質問者からのお礼
有り難うございます。 直線と点との距離を使った解法はうまくいかないので、 他の解法がないか考えていましたが、回答いただいた 方法に私も気づきました。広い視野で見ることの大切 さということですか。