• ベストアンサー

集合の問題です

集合の問題です x∈Nと<v(x),1>∈Z を同一視する ただし<v(x),1>はv(x)-1を意味する またv(x)=x+1 とすると下の≦がwell-definedでありNの順序の拡張であることを示せ x≦y⇔<v(x),1>≦<v(y),1> という問題です well-defined の意味は元の取り方によらず定義が出来ている事を証明せよという意味みたいですが、具体的にどうすれば証明ができるのかがよくわかりません できる方いましたらよろしくお願いします

質問者が選んだベストアンサー

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.2

N=(全自然数の集合) N^2={(a,b)|a∈N,b∈N} (a,b)∈N^2 に対して <a,b>={(x,y)∈N^2|(a,b)∈N^2,a+y=b+x} として、 Z={<a,b>|(a,b)∈N^2} と整数の集合を定義する x∈Nと<x+1,1>∈Z を同一視する 下の≦well-definedでありNの順序の拡張となる <a,b>≦<c,d> ←def→ a+d≦b+c <a1,b1>=<a2,b2>,a1+b2=b1+a2 <c1,d1>=<c2,d2>,c1+d2=d1+c2 a1+d1≦b1+c1 とすると a2+d2+b1+c1=a1+d1+b2+c2 a1+d1=b1+c1のとき a2+d2=b2+c2 a1+d1<b1+c1のとき a1+d1+e=b1+c1 となるeがある a2+d2+a1+d1+e=a1+d1+b2+c2 a2+d2+e=b2+c2 a2+d2<b2+c2 ∴≦well-defined x≦y←→x+2≦y+2←→<x+1,1>≦<y+1,1> ∴Nの順序の拡張となる

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • koko_u_u
  • ベストアンサー率18% (216/1139)
回答No.1

とりあえず、「全て」を記載しないとまったく訳がわかりません。 きっと自然数 N から整数 Z を構成しようとしているのでしょうけど。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 集合論の問題です。

    集合論の問題です。 同値関係が分かるようになりたいので、 よろしくお願いします。 R^2の関係~を以下で定義。 (x,y), (x',y')∈R^2に対して、 x-x'∈Z and y-y'∈Z なるとき、 (x,y)~(x',y')と表す。 この同値関係による同値類すべての集合をAと表し、 (x,y)∈R^2の同値類を[x,y]とあらわす。 a,b,c,d∈Zのとき、 f( [x,y] ) = [ax+by, cx+dy] ([x,y]∈A) によってf:A→Aが well-definedに定義できることを示せ。

  • 全順序集合と半順序集合

    x=(x1,…xn) , y=(y1,…,yn) ∈R^n に対して x≦yを Σ(i=1からkまで)x(i) ≦ Σ(i=1からkまで)y(i) (k=1,2,…,n) によってR^nに関係≦を導入する。 R^nはこの≦に関して半順序集合になっていることを示せ。 また、x≦(にならない)y , y≦(にならない)x となるx,yの例をあげよ。 という順序集合の問題です。 反射的・反対称的・推移的の3つを示せば良いのは分かるのですが、どのように書いて良のか分かりません。 例:推移的を示す 任意のx=(x1,…xn) , y=(y1,…,yn) , z=(z1,…,zn) ∈R^n に対して Σ(i=1からkまで)x(i) ≦ Σ(i=1からkまで)y(i) かつ Σ(i=1からkまで)y(i) ≦ Σ(i=1からkまで)z(i) ならば Σ(i=1からkまで)x(i) ≦ Σ(i=1からkまで)z(i)  は成り立つ。 このように、そのまま書けば良いのでしょうか・・・? それから、最後の例をあげよのところは、全順序集合にはならないための反例になっているのだと思いますが、どうしても思いつきません。 ∞を考えるのでしょうか・・・? そもそも全順序集合は半順序集合が成り立つことが前提みたいに習いましたが、反対称的の 任意のa,b∈Xに対して aRb,bRa⇒a=b ここで、aRbとbRaが成り立つことを言ってしまっているので、必ずaRbかbRaになっているような半順序集合は全順序集合という定義も意味がないような気がしてしまいます。 よろしくお願いします。

  • 集合の問題

    集合Aから集合Bへの写像f:A→Bが与えられているとする。 Aの2元a,bについてf(a)=f(b)のときa~bと定義すれば、 関係~が同値関係であることを示せ。 さらにfが全射であれば同値類集合A/~と集合Bは対等であることを示せ。 前半はいいのですが後半がいまいちわかりません。 以下のように示したのですがどうでしょうか? X/~={[x]|x∈X},[x]={y∈X|x~y即ちf(x)=f(y)} これよりg:A/~→B:g([x])=f(x)が全単射かつwell-definedであることを示す。 (well-defined) [x]=[x']とする。この時∀y∈Xについて y∈[x]とすればf(y)=f(x)=f(x')となるのでg([x])=g([x']) よってgはwell-defined (全射) ∀y∈Bとするとfが全射であるから∃x∈A s.t. f(x)=y これよりx∈[x]だから∃[x]∈A/~となるのでgも全射となる。 (単射) g([x])=g([y])⇒f(x)=f(y)とするとx∈[x]⇒x∈[y]がいえる。 其の逆も言えるので[x]=[y]

  • 数学の、凸集合の問題を教えて下さい。

    次の6つの集合を、凸かどうか調べよという問題です。 図書館で本を調べたりしたのですが、定義とかだけで具体的な問題が載っておらずよく分かりません。 分かるやつだけでも全然構いません。お願いいたします。 (1)集合S={(x,y,z)∈R^3:x^2+y^2≦z} (2)集合S={(x,y)∈R^2:1≦x≦2,y=3} (3)集合S={(x,y,z)∈R^3:x+y≦3,x+y+z≦5,0≦x,y,z} (4)集合S={(x,y,z)∈R^3:x+y=3,x+y+z≦6} (5)集合S={(x,y,z)∈R^3:x^2+y^2+z^2≦4,x+y=1} (6)集合S={(x,y)∈R^2:x^3≦y,0≦x} お願いします

  • 数学の幾何学の問題がわからないです。

    n∈Nに対し、Z上の同値関係~nを次のように定め、x∈Zの同値類を[x]n、商集合をZ/~nをZ/~nZで表す。 x~ny⇔(x-y)/n∈Z 次の写像の定義はwell definedかどうか調べよ。 (1) f: Z/4Z → Z/2Z ; [x]4 → [x]2 (2) g: Z/2Z × Z/3Z → Z/6Z ; ( [x]2 , [x]3 ) → [xy]6 どちらか片方だけでもおしえてくれませんか?? さっぱりわからないのです。

  • 集合、濃度の問題について教えてください。

     (1)は解決できました。(2)、(3)の考え方と解法がつかめません。よろしくお願いします。                                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (2)について、0^(♯X)は、問題文の定義より、♯(Φ^X)と書き表せます。 ただ、∮;X→Φという写像の全射かつ単射を示すにはどうすればよいでしょうか? また、どのような答えにいきつくのでしょうか? (3)については、0しか含まない集合Zから0しか含まない集合Wという写像kを考えて、全単射がわかるという形で大丈夫でしょうか? ※(1)は以下のようになりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射が存在すればいい。  Φが全単射で示された。

  • 集合の問題です

    集合の問題です 集合 S={(x,y,z)∈R³|x²+y²+z²=1, x-y-z=1} の上で F(x,y,z)=x+y の最大点および最大値を求めよ。 という問題が解けずに困っています。 どなたか解答例のわかる方がいましたら教えてください。

  • well-defined

    e^z = Σ(1/(n!)z^n) cos(x)=Σ(((-1)^n/(2n)!)x^(2n)) sin(x)=Σ(((-1)^n/(2n+1)!)x^(2n+1)) と定義する。 常微分方程式の解の存在と一意性の定理を用いて、上の定義はwell-definedであることを詳しく述べよ。 という問題があるのですが、「well-defined」ってどういうことですか?

  • 集合の問題!

    集合の基礎的な問題です。 わからなくてかなり困っています! 明日テストがあるので、これらの問題をどうしても理解したいです。 自分で解いてみたのですが、以下のことくらいしかわかりませんでした。 たぶん証明を見れば理解できると思うので、至急回答お願いしたいです。 よろしくお願いします!!>< <問題> 問1:FがΩの集合体であるとき、次を示せ。 (1)Ω∈F (2)A,B∈Fならが、A⊂B,A\B,AΔB∈F (3)A1,A2,…,An∈Fならば、∪(i=1,n)Ai,∩(i=1,n)Ai∈F 問2:集合X,Yの濃度が同じである、すなわちX~Yは同値関係であることを示せ。 問3:ベルンシュタインの定理を用いて、次を示せ。 (1){x|0<x≦1}~{x|0≦x≦1} (2){(x,y)|0<x≦1,0<y≦1}~{x|0≦x≦1,0≦y≦1} (3)a<bであるとき、[a,b]~R^2 (4)a<bであるとき、[a,b]~D 但し、D⊂R^2でDは少なくとも1つの内点をもつ。 問4:Fをσ集合体とするとき、以下を示せ。 A1,A2,…,An,…∈F ⇒ ∪(i=1,∞)Ai∈Fとするとき    (i)∩(i=1,∞)Ai∈F    (ii)lim(n→∞)supAn∈F ※問4は記述がわかりづらいですが、A1から始まる無限大の和集合がFに含まれる、(i)はA1から始まる無限大の積集合である、という意味です。(ii)はn→∞がlimの下にくれば正しい記述になります。問1の(3)の記述も同じくです。 <考えたもの> 問2:X~Yということから濃度の定義より、XとYの間には全単射がX→Yが存在する。その上で、反射律・対称律・推移率を示せばよい。 という考えまでは至ったんですが、やってみようとしてもここからの証明の仕方というか記述の仕方がわかりません… 問4:(ii)は、lim(n→∞)supAn∈F=∩(i=1,∞)(∪(i=1,∞)Ai):上極限集合 なので、これがFに含まれることを証明すればいいんだろうとは思うのですが記述の仕方がいまいちわかりません。(i)もどのように記述していけばよいのでしょうか? 問1、問3は証明の見通しが立ちません…。 特にこの2つがわからないです。

  • 離散数学の半順序集合に関する問題

    離散数学の半順序集合に関する問題 離散数学の問題が解けずに困っています。 以下の問題を詳しく解説を交えて解いていただけるとありがたいです。 Aを集合とするとき、半順序集合(P(A),⊆)について、次の(1)(2)に答えよ。 (1)X,Y∈P(A)の上限、下限をそれぞれsup{X,Y}、inf{X,Y}とする。 このとき、sup{X,Y}=X∪Y      inf{X,Y}=X∩Y をそれぞれ証明せよ。 (2)半順序集合(P(A),⊆)は束であるかどうか述べよ。 以上です。よろしくお願いします。

このQ&Aのポイント
  • ポータブルブルーレイディスクの再生ができず困っています。購入後すぐに再生ソフトをインストールしましたが、4K ULTRAHDの再生ができません。
  • ノートパソコンでポータブルブルーレイディスクの再生を試みていますが、4K ULTRAHDの再生ができません。再生ソフトは正しくインストールしています。
  • 購入したポータブルブルーレイディスクが正常に動作せず、4K ULTRAHDの再生ができません。再生ソフトの設定を確認しましたが問題は解決しません。
回答を見る