• ベストアンサー
  • すぐに回答を!

数Cの問題です。

数Cの問題です。 双曲線x^2/4-y^2=1上の任意の点P(x1,y1)における接線が漸近線と2点A,Bで交わる時、三角形OABの面積は点Pの位置に関わらず一定であることを示せ。 という問題で、解説をよんでも分からない個所があったので質問させていただきます。 解答には、 「P(x1,y1)における接線の方程式は、 x1x/4-y1y=1 漸近線y=x/2,y=-x/2との交点A,Bの座標は、 (x1+2y1,(x1+2y1)/2),(x1-2y1,-(x1-2y1)/2) このとき、AB=……」 と続いていくのですが、この座標がどうやって出たのかが分かりません。 教えて頂けたらありがたいです。

noname#180825
noname#180825

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#185706
noname#185706

x1 x / 4 - y1 y = 1 に y = x / 2 を代入して整理すると、点Aのx座標として x = 4 / (x1 - 2 y1) (1) が得られます。ここで、点Pは与えられた双曲線上の点なので、 x1^2 / 4 - y1^2 = 1。 これより (x1 - 2 y1)(x1 + 2 y1) = 4。 (2) (2)を(1)で使って x = x1 + 2 y1。 y = x / 2 = (x1 + 2 y1) / 2。 点Bの座標も同様にして求められます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど! 詳しい回答ありがとうございました^^

関連するQ&A

  • 初めて数Cをやっているので、初歩ですが。。。

    すみません、とても初歩的なところなのだと思いますが、 双曲線の漸近線は y=(b/a)x ですよね? でも、問題には点(2,2)を通り、漸近線が y=±x+1 である双曲線の方程式を求めよ。 となっているのですが、漸近線の+1の部分はなにを意味するのでしょうか? 本当に簡単なところですみません。自分だけで数学を進めるとわからないことばかりで。。。

  • 数学について

    曲線C:x^(2)/a-y^(2)/b=1上の点P(x1,y1)におけるこの曲線の接線をlとする。直線lと曲線Cの2つの曲線Cの2つの漸近線との交点をそれぞれA,Bとし、原点をOとする。また、線分OPを直径とする円と曲線Cの2つの漸近線とのO以外の交点をそれぞれQ,Rとする。ただし、a,bは正の定数とする。 ・直線lの方程式を求めよ。 ・点P(x1.y1)は線分ABの中点であることを示せ。 ・三角形OABの面積は点P(x1.y1)の位置によらず一定であることを示せ。 ・2つの線分PQ,PRの長さをそれぞれd,d'とするとき、積dd'は点P(x1.y1)の位置によらず一定であることを示せ。 について教えて下さい。 全部に答えなくても結構です。 よろしくお願いです。m(__)m

  • 数学の問題

    数学の問題 原点O(0,0)を中心とする半径1の円に、円外の点P(x0,y0)から2本の接線を引く。 (1)2つの接点の中点をQとするとき、点Qの座標(x1,y1)を点Pの座標(x0,y0)を用いて表せ。 また、OP*OQ=1であることを示せ。 という問題です。 接点をA,Bとすると、AとBを結んだ線分は点Pの極線だから、その方程式は x0x + y0y = 1 というのは分かります。 PA=PB だから三角形PABは二等辺三角形 よって、点Pから点Qに線を引くと、それらは垂直に交わる。 つまり、PQの方程式を求め、それとx0x + y0y = 1 との交点が点Qの座標です。 なので、PQを求めたいわけなんですが 求め方が分かりません。 y0x + x0y = 0 がPQなんですが、どうやって求めるのでしょうか? また、その座標を求めたとして、次に「OP*OQ=1であることを示せ」ですが 解説では OQ^2 = x^2 + y^2 =1/OP^2 よって、OP*OQ = 1 とあるんですが、なぜこのような考え方なのかが分かりません。 どのような考え方なんでしょうか?

  • 数学の問題です

    図形と方程式の問題です 分からないので教えてください... 1 xy座標平面上の原点をO,座標が(6,0),(6,8)である点をそれぞれA,Bとする。このとき、△OABの外接円、内接円の方程式を求めよ。 2 円x^2+y^2=24と直線3x+4y=10の2交点をP,Qとするとき、線分PQの長さを求めよ。 3 点(4,2)を通り、円x^2+y^2=2に接する直線の方程式を求めよ。 4 2つの円x^2+y^2+4x-6y+9=0,x^2+y^2+2x-4y=0の2つの交点を通る直線の方程式を求めよ。 5 円x^2+y^2=9と円x^2+(y+a)^2=9が共有点を持つような定数aの値の範囲は(ア)≦a≦(イ)である。 多くて申し訳ありませんが、お願いします

  • 双曲線の問題です>_< あと、問題書き間違えてました>_<!!

    双曲線x^2-2y^2=1に直線x=2上の任意の一点から、二本の接線を引く時、その2接点を結ぶ直線は定点を通る事を示せ <教科書の解答> 直線x=2上の点 P(2.b)から双曲線へ引いた接線の接点をQ(x0、y0)R(x1、y1)とすると、 2接線の方程式は、 x0x-2y0y=1、x1x-2y1y=1。 これが点Pを通る事より、 2x0-2by0=1 2x1-2by1=1。 一方、QRの方程式は y-y0=(y0-y1)/(x0-x1) ×(x-x0) (2) ここで(1)より、(y0-y1)/(x0-x1)=1/bであるから、(2)は y-y0=1/b(x-x0) ∴y=(1/b)x-(1/b)x0+y0=(1/b)x-1/2b=(1/b)(x-1/2) となり、定点(1/2,0)を通る。 質問です!(1)の式を作るまではわかったのですけど、”一方QRの方程式は~”っていう部分の式が どのようにして出来たのか解りません>_< (2)の式のことです。 (2)の式を見ると、y-y0=(y0-y1)/(x0-x1)×(x-x0)となってるので、 (x-x0)がy0-y1/x0-x1に掛かっているので、もともと左辺にあったもの?と考えたら、 (y-y0)/(x-x0)=(y0-y1)/(x0-x1)という風に式を変形してみて考えても、 元々どのような式から生まれてきたのか解りません! あと、二つ目の質問は、”ここで(1)より~(y0-y1)/(x0-x1) =1/bという部分です。 (1)をどのようにしたら、このようになるのですか??>_<????? 誰か教えてください よろしくお願いします>_<

  • 楕円の接線の問題

    楕円の接線の問題 (1)接線の勾配は、楕円の方程式 ..... (x/a)^2+(y/b)^2=1 をxで微分することで求めることができます。 微分すると、 .....2(1/a^2)x+2(1/b^2)y(dy/dx)=0 です。これを変形すると、 ......dy/dx=-{(a^2)x}/{(b^2)y} となりますので、点Pの勾配は(x,y)=(p,q)を代入して .......-{(a^2)p}/{(b^2)q} ……(1) です。 ------------------------ (2)点Pを通り接線に垂直な直線は、傾きが(1)の逆数であることから、 ........y-q={(b^2)q}/{(a^2)p}・(x-p) ……(2) となります。 -------------------------- (3)式(2)のyに0を代入して、xについて解くと、交点Xのx座標が .......x=p{1-(a/b)^2} であると分かります。 式変形はこれであっていますか?

  • 数学の問題について

    xy座標において、双曲線C:x^(2)-y^(2)=1上の点P(a.b)におけるCの接線に対して、原点Oから下ろした垂線の足をQとする。 ・原点Oを極、半直線をOxを始線とする極座標において、双曲線Cの極方程式を求めよ。 ・点Pが双曲線C上を動くとき、点Qが描く軌跡の極方程式を求めよ。 ・点A,Bのxy座標を(1/√(2),0), (-1/√(2),0),とする。点Aから点Qまでの距離AQと、点Bから点Qまでの距離BQとの積は点Pのとり方によらず一定であることを示せ。 どう考えてもわからないので過程を教えてください。

  • 数学の問題の解答を教えてください。

    放物線 y=x²上の2つの点A(α,α²)、B(-α,α²) における接線の方程式をそれぞれl,mとする。ただし、α>0とする。   (1)点Aにおける接線lの方程式を求めよ。   (2)2つの接線l、mの交点Pの座標を求めよ。   (3)α=1のとき、放物線と直線ABで囲まれる部分の面積Sを求めよ。   (4)放物線と2つの接線で囲まれる部分の面積が18となるときのαの値を求めよ。

  • 数学の微分の問題について教えてください。

    双曲線 xy=k (K>0) 上の任意の点P(x0, y0) における接線がx軸、y軸と交わる点をそれぞれQ、Rとします。そのとき、 (1) 点Pは線分QRの中点であることを証明してください。 (2) 原点をOとすれば、三角形OQRの面積は点Pの位置に関係なく一定であることを証明してください。 この問題のヒントが、 点P(x0,y0) における接線の方程式 y-y0=f'(x0)(x-x0) この接線の方程式で、y=0 とおいて、 点Qのx座標xQ が求まる Q(xQ,0) この接線の方程式で x=0 とおいて 点Rのy座標yR が求まる R(0,yR) です。 わかりづらいですが x0、y0の0は小さい文字のつもりです。 お願いします。

  • 双曲線の問題

    直角双曲線ではないx^2/a^2-y^2/b^2=1上の点Pから二つの漸近線に垂線を下ろし、交点をそれぞれ点Q、点Rとする。 PQ×PRが一定であることを示せ。 答えをなくしてしまったので、考え方を含めて教えて頂けると嬉しいです。 お願いします。