ベストアンサー exp{-kx}(dy/dx-ky)=d/dx(yexp{-kx}) 2010/05/25 18:49 exp{-kx}(dy/dx-ky)=d/dx(yexp{-kx}) この式がなぜ成立するのか教えてください!! みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2010/05/25 19:37 回答No.1 右辺に「積の微分法則」を適用する。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ∫[0,+∞] sin(kx)dxの値は? 以下の計算になると思いますが、、、 ∫[0,+∞] sin(kx)dx=∫[0,π/2k] sin(kx)dx+∫[π/2k,+∞] sin(kx)dx =∫[0,π/2k] sin(kx)dx + ∫[0,+∞] cos(kx)dx =1/k + ∫[0,+∞] cos(kx)dx ここで、∫[0,+∞] cos(kx)dx は、 ∫[0,∞] cos(kx)dx=(1/2)∫[0,∞]{exp(ikx)+exp(-ikx)}dx =(1/2)∫[0,∞] exp(ikx)dx+∫[(0,∞] exp(-ikx)dx =(1/2)∫[-∞.0] exp(-ikx)dx+∫[0,∞] exp(-ikx)dx =(1/2)∫[-∞.+∞] exp(-ikx)dx =δ(k)/2 です。 したがって、 ∫[0,+∞] sin(kx)dx=1/k + δ(k)/2 と思います。 しかし、 k=0では、 ∫[0,+∞] sin(kx)dx=∫[0,+∞] 0 dx=0 で、右辺は、δ(k)/2は怪しいですが、少なくとも、 1/k=∞ です。 正しい、積分方法を、お教え下さい。 1.(d^4y/dx^4)+(2d^2y/dx^2)+8dy/dx)+ 1.(d^4y/dx^4)+(2d^2y/dx^2)+8dy/dx)+5y=0 2.(dy/dx)+1-x-x^2-(2x+1)y-y^2=0 3.{(x+1)d^2y/dx^2}+{(4x+5)dy/dx}+(4x+6)y={(x+1)^2}e^(-2x) の一般解を求めたいです。 解答解説をお願いします。 dy=dy/dx・dxの求め方 dy/dx=dy/dx から両辺にdxを掛けたようになっておりますが、 dy=dy/dx・dx を求めるために 微分法等の公式を活用してどのようにすれば求められるのでしょうか? dy/dx はyをxで微分するということを表しており、dy/dx は分数とは異なると理解しておりますが・・・ どうぞ宜しくお願い致します。 dy=dx こんにちは さっそく質問なのですが、 例えば、微分方程式や置換積分でdy/dx=1⇒dy=dxのような式変形を使いますよね。 が、このような変形をしていいのはなぜですか? 微分のdy dxの意味 微分で、dy/dx=f '(x)とあります、これをdy=f '(x)・dxとするのは分かるのですが、 さらに逆にしてdx/dy=1/f '(x)というのも成立するのでしょうか? 例えばdy/dx=2x+5として、 dx/dy=1/2x+5も成立するのでしょうか? もしこれが成立するなら、逆になってxをyで微分するっていうことになりますよね? あと2回微分や3回微分でも同様なことができるでしょうか? このあたりのことって教科書にも載ってないし、詳しい説明もないまま ただ計算しているという感じになってしまってます。 よろしくお願いいたします。 (dx/dy)×dy=dx (dx/dy)×dy=dxなどと微積分では教えられてきましたが、本当とうの意味は違うようです。本当の所はどうなのでしょうか d((y(x)^2)/2)/dx=dy/dx d((y(x)^2)/2)/dx=dy/dxとなるのはなぜですか?教えてください! 微分で書かれているdyとかdxとかのdって何でしょうか? 微分で書かれているdyとかdxとかのdって何でしょうか? という質問がかぶっていたので回答読ましてもらったのですが ちょっとピンとこなかったので、質問させてください。 y=f(x)のときに y'=f'(x) dy=f'(x) という使い方であっているのでしょうか? お願いします。 d/dx * y^4 = d=dy * y^4 * 教科書に合成関数の微分法により、d/dx * y^4 = d=dy * y^4 * dy/dx と書いてあったのですが、なぜこうなりますか? 一応、理解しているかは分かりませんが合成関数の微分法については知っています どなたかもう少し噛み砕いて説明していただけると助かります dy/dxの求め方が分かりません。 (x^3) - 3(x^2)y + (y^3) = 0 上記の式(陰関数)から、dy/dxを求める問題が分かりません。 どうかご教授お願いします。 dy/dx・dxは置換積分を使ってdy? 次の微分方程式を解け 2yy'=1 とありました。解答は -------------------------------- 2y・dy/dx=1の両辺をxで微分して ∫2y (dy/dx) dx=∫dx 置換積分法により ∫2y dy=∫dx ゆえに y^2=x+C (Cは任意定数) -------------------------------- となっています。ここで疑問に思ったのが ”置換積分法により”という箇所です。 これはdy/dx・dxを”約分して”dyにしてはならず、 ”置換積分法により”dyにしなくてはならない、 ということが言いたいのだと解釈しました。 疑問1. そこで、ここにおける”置換積分”とは具体的には どのような作業を指すのでしょうか? 疑問2. 以下は全て同じことを表現したいと意図している のですが、誤解を招くことはないでしょうか? 2y・dy/dx・dx 2y (dy/dx)・dx 2y dy/dx dx 2ydy/dx dx 2y*dy/dx*dx 2yとdyの間に半角スペースを入れた方がよいか ・と*と半角スペースどれが妥当か dy/dxは()でくくるべきか などなどです。 yがdy/dx+2xy=4x・exp(x^2) yがdy/dx+2xy=4x・exp(x^2) を満たすとする。 z=exp(x^2)・yとするとき、zが満たす微分方程式を求めよ。 また、zに関する微分方程式を解き、解をyで求めよ。 という問題があります。 専門書にも似たような問題が一切なく、とても苦労しています。 よろしければ、この問題を解く方針をご教授お願いできないでしょうか? dy/dx=-2xy 1階の線形微分方程式dy/dx=-2xyの一般解を求めるにはどうしたっらいいんですか? dy÷dx 独学で数学の勉強をしています. 微分のところをやっていて少し詰まってしまいました。 Δy÷Δx というのは分数のようなのですが、 dy÷dx はただの記号というようなことが書いてありました。 過去の質問等を見て lim という操作をしているから分数ではないと考えたのですが、 その一方で dx などが「微分」と呼ばれ、 dy÷dx は「微分係数」とか「導関数」と呼ばれるということも知り、 ただの記号なのに dx 単独に分解できてるので、 どうしても分数のように見えてしまいます。 どのように考えればよいのでしょうか? 逆関数の微分 dy/dx=1/(dx/dy) 逆関数の微分はdy/dx=1/(dx/dy)と表せるらしいですが混乱してしまいよくわからなくなってしまいました。混乱の原因となった問題を通して教えてください。 (1)(x^3)'=3x^2 dy/dx=1/(dx/dy)を用いて、y=x^3の逆関数y=f(x)の導関数を求めよ (2)rが有理数の時、(x^r)'=rx^r-1を証明せよ。 (1)例えばy=h(x)逆関数というのはこれをxについて解き、yとxを入れ替えて求めますよね。(1)の場合y=f(x)はx=y^3⇔y=x^(1/3)ですので、これを微分してy'=とすれば答えは求められるようです。でも、dy/dx=1/(dx/dy)を使う場合がわかりません。 df(x)/dx=1/(dx/dy)=1/3y^2=3^(-2/3)と書いてあります。 (2)はpが自然数のときy=x^(1/p)とするとx=y^pなので、dy/dx=1/(dx/dy)=1/py^(p-1)・・・・=1/px^(1/p-1)と回答が始まっています。 (1)(2)では逆関数の使い方がそれぞれ異なる気がします。簡潔にいうと「dy/dx=1/(dx/dy)の(dx/dy)の部分に来るものがわかりません。」(1)では逆関数(xについて解いてそれをさらにxとyを取り替えたもの)がその部分に来ているのに(2)ではただ単にxについて解いたものがきていますよね(xとyを取り替えるといる作業がない)。 まったくわからないので教えてください。ほんとによろしくお願いします!! dy/dxの計算問題 ある問題の途中で最後の計算のところがわからないので教えてください。 dy/dx=sint/1-costという結果を媒介変数から求めました。ここで、 d^2y/dx^2=d/dx*(dy/dx)=d/dt*(sint/1-cost)*dt/dx と表されていますが、最後の*dt/dx がどういう意味かわかりません。 合成関数の微分の考えを用いているのは「なんとなく」わかるのですが、なぜtをxで微分したものなのでしょうか。言われてみれば納得できないこともないですが、明確にはわかりません。まして、自力でこの手の問題を解くときにはわからないと思います。 どなたか教えてください。 計算を教えてください 微分方程式の問題ででてきた変形です e^(-kx)*((dy/dx)-ky) = (d/dx)*(e^(-kx)*y) なぜ右辺のように変形されるのかわかりません。 ちなみにキーポイント微分方程式(2.4)式です。 その章の冒頭の式で,後に同じ変形が何度もでてくるので,先に進めず困っています。 わかる方お願いします。 dy/dxという微分について x^2+y^2-2y=1のdy/dxを求めよ。と言う基本的な問題があったのですが、yの項がわかりません。(x^2)'=2x (1)'=0 と言うのは分かるのですが、yの項はどうするのでしょうか。式も丁寧に書いていただけると助かります。 d(dx) yがxの関数でy=f(x)と書けるとき、dy=f'(x)dxで、これはdx=X-x,dy=Y-yとしたときに点(x,f(x))での接線上の点を(X,Y)としたときの接線の方程式を表すとのことでした。 このあと2階微分の説明のところでdx=⊿xはxに無関係にとれるのでd(⊿x)=0だからd(dx)=0とありました。dx=X-xなのでd(dx)=0-1=-1と考えてはいけないのはなぜですか? 陰関数についてdy/dxの求め方を教えてくだい 下の式に定める陰関数についてdy/dxの値の求め方を教えてください よろしくお願いいたいします x^3+y^3ー3xy=0