• 締切済み
  • 困ってます

巡回群

位数がP^5、P^4、P^2の巡回群の直積からなる群Gがあり、位数がP^4、Pの直積からなる巡回群に同型なHがあります。 このときGの部分群となるHはいくつありますか? 数学の基礎知識はありますが、まったく見当がつきません。糸口だけでもいいので教えてくださるようお願いいたします。 Pは素数です。 P^5はPの5乗ということです。 よろしくお願いいたします。

noname#20863
noname#20863

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2

例えば、pの巡回群と同型な、位数p^2の巡回群の部分郡と位数p^5の巡回群の部分群を組み合わせた群と、位数p^4の巡回群の直積からなる群は、Hと同型ですね。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

問題文は、正確ですか? 位数がP^4、Pの直積からなる巡回群に同型なH  ↓ 位数がP^4、Pの巡回群の直積からなる群に同型な群H ?

共感・感謝の気持ちを伝えよう!

質問者からの補足

そうです。巡回群の直積です。 間違いです。すみません。

関連するQ&A

  • Wikipediaの巡回群の項目について

    Wikipediaの巡回群の項目に p、q が互いに素ならば、位数 p の巡回群と、位数 q の巡回群の直積は巡回群である。 についてなのですが、これについては先の質問で理解できました。 ただ、この逆つまり、 位数 p の巡回群と、位数 q の巡回群の直積が巡回群ならば、p、q は互いに素 これは成り立つのでしょうか? 何となく成り立つような気がするのですが・・・ 成り立つならば、証明の概略かヒントだけでも結構なのでいただけませんでしょうか?

  • 乗群の位数とラグランジェの定理

    (mod p)の剰余類で乗群G*をつくるとき,(pは素数) 0を含む剰余類は除くので,|G*|=p-1かと思います. a ∈ G*で,巡回部分群Hを生成すれば, H=G*であることも確認できます. ただ,ここでどうしてもわからないことがあります. G*の位数も,Hの位数もp-1で,-1されるために一般に素数にはなりません. ラグランジェの定理から位数が素数の有限群が真部分群を持たないことがわかりますが, G*の位数は,p-1で素数にならないため,真部分群を持ってもよさそうな気がします. どこに間違いがあるのでしょうか?

  • 巡回群と巡回群の直積は巡回群?

    Wikipediaの巡回群の項目に p、q が互いに素ならば、位数 p の巡回群と、位数 q の巡回群の直積は巡回群である。 ということが書いてあったのですが、これって簡単に証明できるのですか? 証明の概略と、これが十分条件も満たしてるならそちらの方の証明の概略も教えていただけないでしょうか。 そもそも巡回群の直積が巡回群になるとは、たとえば{e,a,a^2}と{e,b,b^2,b^3}の直積を考えたときに、<a,b>^nは単純に<a^n,b^n>というように考えて、 <a,b>^0=<e,e> <a,b>^1=<a,b> <a,b>^2=<a^2,b^2> <a,b>^3=<e,b^3> <a,b>^4=<a,e> <a,b>^5=<a^2,b> <a,b>^6=<e,b^2> <a,b>^7=<a,b^3> <a,b>^8=<a^2,e> <a,b>^9=<e,b> <a,b>^10=<a,b^2> <a,b>^11=<a^2,b^3> はい、巡回群。という感じになるのでしょうか?

  • 巡回群

    「Gを位数がnの巡回群とする。nの任意の正の約数dに対して、Gは位数dの部分群をちょうど1つだけ持つことを示せ。」 私はこれを次のようにして示しましたが・・・。 xをGの生成元とする。するとx^n=eである。 dはnの約数であるから、∃q∈N s.t. n=dq が成立。 すると、x^n=(x^q)^d=eである。 よって、x^q∈Gから生成される巡回部分群Hを考えると H={x^q,x^(2q),・・・,x^((d-1)q),e}で、Hの位数はdである■ (1)とりあえず位数dの部分群の存在は示せたと思うのですが・・・あっているでしょうか? (2)あと、問題文を見る限り、位数dの部分群の"一意性"も示さねばならないと思うのですが、これがよくわかりません。 位数dの部分群H'を任意に取ってきて、H=H'であることを示せばいいのかな?と思ったのですが、できませんでした。。。 (1)(2)に関して、どなたかわかる方がいましたら、教えていただけないでしょうか?よろしくお願い致します。

  • 巡回群について

    Gは位数Nの巡回群とする。HはGの部分群とする。 G=<a>、{mは自然数|a^mはHの元}=hとおく。 (1)任意のa^n(Hの元)のついて1≦n≦Nなら、nはhで割り切れることを    示せ。(ヒント:除法の原理) (2)H=<a^h>であることを示せ。 (3)N=12のとき、Gの部分群をすべてあげよ。 という問題なんですが、(1)は除法の原理から 「n=ph+q(p,qは正の整数、0≦q<h)」 という関係式を導いたのですが、解答につながりません。 (1)~(3)のアドバイスお願いします。

  • 巡回群について

    1、位数が素数の群は巡回群であることを示せ。 2、加法群Qは巡回群かどうか示せ。 いろいろ調べてみたのですがどの回答も的を得ずいまいちよく理解できなかったのでどなたか教えてください。

  • 本当に巡回群なの?

    Gを有限群とする。Tを一次元トーラス(=R/Z)とする。f:G→Tを準同型写像とする。 Hをfの核 i.e.{x∈G|f(x)=0} とする。このとき、G/Hは巡回群になるらしいのですが、理由がわかりません。 準同型定理より、f(G)が巡回群であることを示せばよいのですが、うまくいきません。トーラスの性質を何か使うのでしょうか??? ご教授をお願いします。

  • 巡回群について

    「Gを位数nの巡回群とする.このとき,Gの部分群の位数はnの約数で,各約数に対してただ一つ存在する.」 この証明でいくつか分からなかったので教えてください. (以下証明) G=<g>とし,m|nであるとする. ここでn/m=cとおくと,<g^c>は位数mの巡回部分群になる. また,これと異なる位数mの巡回部分群Sが存在すると仮定する. g^k∈S (kはこれを満たす最小の正整数)とすると,剰余の定理から n=qk+r (0<q∈Z,0≦r<k) となるq,rが存在する.このとき, g^r=g^(n-qk)=g^n(g^(-k))^q∈S で,kの最小性よりr=0を得る. よってn=qkとなり,Sの位数はqとなる.-(1) したがってm=qとなり,S=<g^c>.-(2) 以上より,nの約数に対して,ただひとつの巡回部分群が存在する. (証明終) この証明の最後の, (1):Sの位数はqとなる (2):S=<g^c> の部分がわかりませんでした. (1)について (g^k)^q=g^qk=g^n=e となりますが,これより「Sの位数はq」ということですか? (2)については包含関係を示しているのでしょうか? その辺がよくわかりませんでした. 長文申し訳ありませんがよろしくお願いいたします.

  • 位数素数と部分群の数について

    pを素数とし,Gを位数pの群とする. このときG×Gの部分群の数を求めよ. といった問題について教えてください. Gは位数pの群なので,GはZ/pZと同型になり,G×GはZ/pZ×Z/pZと同型になるので,Z/pZ×Z/pZの部分群の数を求めればいいと思うのですがそれが求められません. よろしくお願いします.

  • 有限アーベル群Gの位数が相異なる2素数p、qの積であるとき、Gは巡回群

    有限アーベル群Gの位数が相異なる2素数p、qの積であるとき、Gは巡回群であることを示せ。 という問題があるのですがよくわかりません。できれば詳しく教えていただけると嬉しいです!