コンパクト作用素の練習問題

このQ&Aのポイント
  • コンパクト作用素に関する練習問題がありますが、証明の指針を教えてください。
  • V=C([a,b])としてT:V→Vを定義すると、Tはコンパクト作用素です。
  • また、m>nを非負整数として、V=C^m([0,1])、W=C^n([0,1])とおくと、F:V→Wを定義すると、Fはコンパクト作用素です。
回答を見る
  • ベストアンサー

compact作用素

コンパクト作用素の練習問題がいくつかあって、しばらく考えているのですがうまく証明できません。回答の指針でも構わないので教えていただきたいのでお願いいたします。 V=C([a,b])としてT:V→Vをf∈Vに対して Tf(x)=∫_{a→x}f(x)dxで定義すればTはコンパクト作用素。 もう1問ですが、 m>nを非負整数として、V=C^m([0,1])、W=C^n([0,1])とおくおとき、 F:V→Wをf→fで定義するとFはコンパクト作用素。 ただしC^n([0,1])のノルムは ||f||=sup(Σ_{0≦j≦n}|f^(j)(x)|)とします。 コンパクト作用素の定義では、任意の有界列の像が収束する部分列を持てばよいのですが、うまく示せませんでした。もうひとつ退化作用素(値域が有限次元空間になる作用素で従ってコンパクト作用素)で近似できればよいという定理も教えていただいたのですが、その方法でもうまくできませんでした。

  • adinat
  • お礼率78% (245/312)

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

私の解答の誤りはご指摘の通りです。解答を次の様に訂正させていただきます。 {fn}をC([a,b])の有界列とする。すなわちあるMがあって    sup|fn(x)|≦M このとき、 s2≧s1として   |Tfn(s2) - Tfn(s1)|=|∫{s1~s2}fn(x)dx|    ≦∫{s1~s2}|fn(x)|dx    ≦(s2-s1)M これは{Tfn}が同等に連続(Mがnに無関係)であることをしめす。{Tfn}が同等に有界であることも明らかだから、アスコリ・アルツェラの定理より収束する部分列を含む。よってTはコンパクトである。 解答の誤りを指摘して下さってありがとうございました。

adinat
質問者

お礼

ぽん。ああ、そうか、アスコリ・アルツェラが使えるのですね。目から鱗が落ちそうです。どうもありがとうございます。

その他の回答 (1)

回答No.1

ご質問の前半部分のみ示します。 {fn}をC([a,b])の有界列とする。すなわちあるMがあって    sup|f(x)|≦M このとき、   ∥Tfn∥=sup|∫fn(x)dx|≦sup∫|fn(x)|dx      ≦(b-a)M よって{Tfn}は有界な列だから、ボルツァノ・ワイエルシュトラスの定理より収束する部分列を含む。よってTはコンパクトである。

adinat
質問者

お礼

初めまして。よいHNですね(笑)回答くださいましてありがとうございます。ただ{Tfn}はC([a,b])の有界列にはなりますが、これは無限次元なのでボルツァノ・ワイエルシュトラスの定理は使えないと思うのですが…

関連するQ&A

  • バナッハ空間

    AからBへの写像全体の集合F(A,B)と表記する。 今Sを集合、Xをバナッハ空間とし、 Fb(S,X)={u∈F(S,X)|sup(t∈S)||u(t)||_X < ∞}と定義する。 ||u||=sup(t∈S)||u(t)||_X このときFb(S,X)はバナッハ空間であることを示せ。 バナッハ空間の定義は完備なノルム空間であることで、 ノルム空間であることは示せたのですが、 完備であることがわからなくて…。 どのように考えればいいのでしょう? なおノルム空間であることの証明は以下のようにしました。 (i)||u||の定義より正値性は明らか。 (ii)|α|sup||u(t)||=sup||αu(t)||は上限の定義より成立。 (iii)三角不等式は||(u+v)(t)||_X≦||u(t)||_X+||v(t)||_X ≦||u||+||v|| よって||u+v||≦||u||+||v||

  • 次の表現行列は(実)ユニタリである事を示せ

    VをR上の有限次元内積空間とする. [問] Rを実数体とする。VをR上の有限次元内積空間とする。 B:={v_1,v_2,…,v_n}とB':={w_1,w_2,…,w_n}を夫々,Vの正規直交基底とする。 f:V→Vを線形写像とする時, 基底BとB'に関するfの表現行列をM_B_B'(f)で表す。 (1) id:V→Vを恒等写像とすると,M_B_B'(id)は実ユニタリ(直交行列(?))であることを示せ。 [ヒント:<w_i,w_i>=1,i≠jなら<w_i,w_j>=0.また表現w_i=Σa_ijv_j (a_ij∈R)] (2) f:V→Vをf(v_i)=w_i (i=1,2,…,n)とすると,M_B_B'(f)はユニタリであることを示せ。 と言う問題です。 これらはどのようにして求めればいいのでしょうか? (1)については 表現行列の定義から x=Σa_iv_i (a_1,a_2,…,a_n∈R)とするとM_B_B'(id)(x)=M_B_B'(x) (∵恒等写像の定義) =Σ[i=1..n]c_iw_i (但し,c_1,c_2,…,c_n∈R) と書け、 ユニタリの定義から内積が保存される事,つまり <M_B_B'(id)(x),M_B_B'(id)(y)>=<x,y>を示せばいいのだと思います。 y=Σb_iv_i (b_1,b_2,…,b_n∈R)として, M_B_B'(id)(y)=Σ[i=1..n]d_iw_i (但し, d_1,d_2,…,d_n∈R) とすると <M_B_B'(id)(x),M_B_B'(id)(y)>=<Σ[i=1..n]c_iw_i,Σ[i=1..n]d_iw_i> =Σ[i=1..n]<c_iw_i,d_iw_i> (∵直交の定義) =Σ[i=1..n]c_id_i (∵正規の定義) となり,<x,y>から遠ざかっております。 どのようにして証明すればいいのでしょうか? (2)についてはユニタリの定義はノルムを保存する事 <M_B_B'(f)(x),M_B_B'(f)(x)>=<x,x> を示す事だと思います。 M_B_B'(f)(x)=M_B_B'(f)(Σa_iv_i)=M_B_B'(f(Σa_iv_i)=Σ[i=1..n]a'_iw_i M_B_B'(f)(y)=M_B_B'(f)(Σb_iv_i)=M_B_B'(f(Σb_iv_i)=Σ[i=1..n]b'_iw_i となり,=<x,x>にたどり着けません。どうすればいいのでしょうか?

  • 半ノルム族によって誘導される位相について

    多様体V上の連続関数全体F(V)の位相に関して、 任意のコンパクト集合Lに対して、 P_L(f) = max |f(x)| ※xはL上を走る P_L(f) は、半ノルムとなり、F(V)にこれらの半ノルム族に誘導される位相が入るらしいです。 半ノルム族に誘導される位相とは、具体的に、開集合はどのように定義されるのですか。 Vがコンパクトであれば、通常のMAXノルムというやつですが、コンパクトでない一般的でない場合の位相の入れ方に関する質問です。 おそらく、ブルバキの位相に載っているかと思うのですが、当方、社会人のため、見ることができません。定義の問題なので、どなたかお願いします。

  • 計量ベクトルについて質問です。

    (1)V=R^nとする。 A=(A1、A2、・・・、An)∈Vに対して、 ||A||=√(A1^2+A2^2+・・・+An^2)と定義すると、 V上の1つのユークリッド的ノルムになる。 これを証明せよ。 (2)V=Cとする。 A∈Vに対して、 ||A||=√(A1Ā1+・・・+AnĀn)と定義すると、 これはV上の1つのユークリッド的ノルムを定義する。      _ ただし、Z=x-iy (z=x+iyのとき) これを証明せよ。 (3)なぜC^nのとき、 ||A||=√(A1^2+・・・+An^2)と定義してはいけないのか。 理由を述べよ。 (本当は定義してもいいのに、) (4)R^nにおいて ||A||=max {|A1|,・・・,|An|}とおくとき、 これはユークリッド的ではないことを証明せよ。   どれでもいいです。 どなたかわかる方、おしえてください。

  • 作用素ノルム

    作用素ノルムについての質問です。 V,W:ノルム空間 L:V→Wを線形写像とする。 定義 ∥L∥=sup{∥L(x)∥ | ∥x∥=1} =sup{∥L(x)∥ | ∥x∥≦1}       =sup{∥L(x)∥/∥x∥ | x≠0} とする。 このとき∥L∥=inf{c | ∥L(x)∥≦c∥x∥}を証明したいのですが、 自分で考えた証明を以下書きます。 ∥L(x)∥≦c∥x∥ より両辺∥x∥で割り ∥L(x/∥x∥)∥≦c.  (1)inf{c}≦ sup{L(x/∥x∥)}=∥L∥は自明。 (2)A={c | ∥L(x)∥≦c∥x∥}とする。 Aは∥L(x/∥x∥)∥の上界より,任意のc∈Aに対して   sup{L(x/∥x∥)}≦c より ∥L∥≦c.   両辺下限を取ると   inf{∥L∥}≦inf{c} ∥L∥の定義より∥L∥は任意のxで成り立つのでxによらない。 故に∥L∥≦inf{c} よって∥L∥=inf{c | ∥L(x)∥≦c∥x∥}                              □ 以上,自分なりの証明なのですが,間違っている箇所や別の証明方法があれば教えてください。 見にくいと思いますがよろしくお願いします。

  • 表現行列

    Vを実数に係数を持つ2次以下の多項式全体が成すベクトル空間とする。すなわち、 V={a+bx+c*x^2|a、b、c∈R} である。tを0≦t なる定数とし、線形変換T :V→V を T(f(x))=f(1+tx)により定義する。 Vの基底1、x、x^2に関するTの表現行列を求めよ。 という問題があります。一般に、、、、 【線形写像f:R^n→R^mに対して、(m,n)型の行列Aがただひとつ定まり、 x'=f(x)=Axと表せる。(x∈R^n, x'∈R^m) この行列Aを、線形写像fの表現行列という。】 表現行列はこのように定義されていますから、この問題の場合 t^(T(1),T(x),T(x^2))= (1,0,0) (1,t,0) (1,2t,t^2) * t^(1,x,x^2) となるため、求める表現行列Aは (1,0,0) (1,t,0) (1,2t,t^2) となるかと思っていたのですが、解答には、これを転置した行列が書いてありました。 (1,1,1) (0,t,2t) (0,0,t^2) となっていました。 なぜこうなるのか理屈が分からないのですみませんが教えてください。

  • Vをn次元内積空間とする。線形写像f:V→Vがpositive且つ<f(x),x>≧0(∀x∈V)ならtr(f)≧0

    内積空間についての命題の証明についてです。 [命題]Vをn次元内積空間とする。 線形写像f:V→Vがpositive且つ<f(x),x>≧0(∀x∈V)ならtr(f)≧0 を示しています。 fがpositiveであるの定義は<f(x),y>=<x,f(y)> (for∀x,y∈V) tr(f)の定義はfの表現行列Aのトレース Vの基底を{v_1,v_2,…v_n}とすると x=Σ[i=1..n]c_iv_i y=Σ[i=1..n]d_iv_i (c_i,d_i∈C:複素数体 (i=1,2,…,n)) f(v_j)=Σ[i=1..n]a_ijv_i と書け,((a_ij)=:Aをfの表現行列という) <f(x),y>=<f(Σ[i=1..n]c_iv_i),Σ[i=1..n]d_iv_i> =<Σ[i=1..n]c_if(v_i),Σ[i=1..n]d_iv_i>(∵fは線形写像) <x,f(y)>=<Σ[i=1..n]c_iv_i,f(Σ[i=1..n]d_iv_i)> =<Σ[i=1..n]c_iv_i,Σ[i=1..n]d_if(v_i)>(∵fは線形写像) で仮定より <Σ[i=1..n]c_if(v_i),Σ[i=1..n]d_iv_i> = <Σ[i=1..n]c_iv_i,Σ[i=1..n]d_if(v_i)> と書ける。。。 からどのようにして証明してけばいいのでしょうか?

  • 距離空間におけるコンパクト性

    距離空間において、コンパクト集合と点列コンパクト集合が同値であることの証明をできるだけ理解したいのですが、参考書のの証明がイマイチ理解できません。 (参考書の証明) (1) コンパクト距離空間Xの任意の点列{x_n}n=1,2,…が収束部分列をもつことを示す。 この点列に対して、A_k={x_k,x_k+1,…}とおき、その閉包(A_k)'全体のなす集合族{(A_k)'}を考える。 {(A_k)'}の各元(A_k)'は空でない閉集合で、単調減少(A_1)'⊃(A_2)'⊃…(A_k)'⊃…であるから有限交叉性をもつ。したがって、Xのコンパクト性より共通部分(A_k)'は空でない。共通部分(A_k)'から1点xを選べば、xは(A_1)'に属するからd(x_(n_k),x)≦1/kなるx_(n_k)∈A_kが存在する。このとき、n_k≧kより数列{n_k}は異なる自数数を無限個含むから、{x_(n_k)}は{x_n}の部分列であり、また明らかにxに収束する。よって、点列{x_n}は収束部分列をもつ。 (2) 距離空間Xが点列コンパクトであると仮定し、Xの任意の開被覆{V_λ}が有限部分被覆をもつことを言う。最初に、{V_λ}に対して、ε>0が存在して、任意のx∈Xのε近傍U(x;ε)が{V_λ}のどれかの元V_λに含まれることを示す。このようなεを開被覆{V_λ}のルベーグ数とよぶ。ルベーグ数が存在しないならば、各kに対し、その1/k近傍がどの{V_λ}の元にも含まれないような点x_k∈Xをとることができる。こうして得られた点列{x_k}は、Xの点列コンパクト性より収束部分列をもつ。その極限をx_∞とおくと、{V_λ}はXの被覆であるから適当なV_λ∈{V_λ}がx_∞を含む。V_λは開集合であるから、μ>0が存在してU(x_∞;μ)⊂V_λ。十分大きいk'をとれば、1/k'<μ/2とd(x_k'、x_∞;μ)<μ/2とが同時に成り立つが、このときU(x_k';1/k')⊂U(x_∞;μ)⊂V_λとなって点列{x_k}のとりかたに矛盾する。すなわちルベーグ数の存在が示さfれた。さて開被覆{V_λ}が有限部分被覆を持たないとして矛盾を導く。{V_λ}に対するルベーグ数をεとし、これを用いてXの点列{x_n}を以下のように構成する。まず任意のx_1∈Xを選ぶ。このとき、U(x_1;ε)を含むV_(λ1)∈{V_λ}が存在する。もし、X-V_(λ1)が空ならばXがV_(λ1)だけで覆われるからX-V_(λ1)≠φであり、点x_2∈、X-V_(λ1)を選ぶ事ができる。同様にU(x_2;ε)を含むV_(λ2)∈{V_λ}が存在するが、X-(V_(λ1)またはV_(λ2))はやはり空でない。よって、x_3∈X-(V_(λ1)またはV_(λ2))を選ぶ事ができる。この操作を繰りかえして得られた点列{x_n}はn>mに対してx_nはU(x_m;ε)に含まれない、すなわちd(x_n、x_m)≧εを満たすから収束部分列を含みえない。これはXが点列コンパクトであることに反し、矛盾が生じた。 (証明終わり) まず有限交叉性の全く意味がわかりません。 私は、点列コンパクトとコンパクトの定義を以下のように学習しています。 X:集合、P:開集合族 (X、P):位相空間 K⊂Xがコンパクト ⇔{U_λ}⊂Pかつ和集合U_λ⊃K(λ∈Λ)、この時、和集合U_(λ_k)⊃K(k=1→n)となるようなλ_1、…、λ_n∈Λが存在する。 K⊂Xが点列コンパクト ⇔K内の任意の無限点列{x_n}(n=1、2、…)がKの点に収束する部分列を持つ。 なるべく定義に従って、証明していきたいです。 どなたか、詳しく証明を解説してほしいです。 回答よろしくお願いします。

  • C^nがヒルベルト空間であることの証明

    C^nを複素数のn個の項x=(α_1,…,α_n)の空間とする。 x=(α_1,…,α_n)、y=(β_1,…,β_n)をC^nの元とするとき、内積を (x,y)=Σ^(n) _(i=1)α_i・(*β_i) (*β_iはβ_iの共役複素数) と定義する。 このとき、C^nがヒルベルト空間であることを証明せよという問題がわかりません。 教科書にヒルベルト空間の定義が「内積空間で(x,x)=||x||^2によりノルムが定義された完備な空間」と書いてあったので、C^nが内積空間であることは示せたのですが、完備である(コーシー列が収束する)ことが示せません。 C^nからどのようにコーシー列をとって収束することを示せばよいのでしょうか? ちなみに教科書には X:ノルム {x_n}をXの元の数列とし、Xのある元xがあって ||x_n-x||→0 (n→∞) となるとき{x_n}はxに収束する とありました。 よろしくお願いします。

  • 公域?

    韓国の中学1年生の数学の教科書を訳していただいたのですが 意味は分かるのですが訳語の内、「公域」というのはおかしいと思うのですが・・・ ---------<!訳していただいた抜粋の引用はじめ>-------------------------- 2、 値域:関数 f:X→Yから集合Xの各元素に対する関数値全体の集合を 関数fの値域と言い、値域は公域の部分集合である。 例)ふたつの集合 X={3,4,5}、Y={5,6,7,8}に対して   XからYへの関数がf(x)=x+3と与えられた場合、関数fの定義域と公域は   各々 集合X、Yである。   一方、関数値を全て求めると      f(3)=3+3=6、f(4)=4+3=7、f(5)=5+3=8   であり 値域をVとすると V={6,7,8}となり、V⊂Yである。 ---------<!訳していただいた抜粋の引用終わり>-------------------------- 公域ということばは多分間違いだと思うのですが、さりとて適当な語が分かりません。 というか、これにあたる日本語はないですよね、あるのでしょうか。