ユークリッド幾何学にまつわる不完全性定理的理解について

このQ&Aのポイント
  • ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。
  • ユークリッド幾何学は一階述語論理で表されることができる自然数の部分集合であって、ゲーデルの不完全性定理の対象である公理Nの無矛盾である論理の対象になってないとなりそれ以上のユークリッド幾何学の論理的理解が進みません。
  • ゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解するとユークリッド幾何学の公理の無矛盾性は証明できない。ユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は公理系Nに含まれ多くの証明できない命題があることになります。
回答を見る
  • ベストアンサー

ユークリッド幾何学にまつわる不完全性定理的理解について

ユークリッド幾何学にまつわる不完全性定理的理解について ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。ユークリッド幾何学は 一階述語論理で表されることが出来る自然数の部分集合であって、ゲーデルの不完全性定理の対象である 公理Nの無矛盾である 論理の対象になってないとなり それ以上のユークリッド幾何学の論理的理解が進みません。そこでゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解すると(須田隆良氏、中西章氏など) (1)ゲーデルの第一不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが 公理系Nにおいて、「公理系Nにおいて命題は証明可能である。」という命題も、「公理系Nにおいて命題は証明不可能である。」という命題も証明不可能である (2)第2不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが その無矛盾性を証明できない となります。これらはゲーデル不完全性対象から外れておりますが、対象外のユークリッド幾何学を理解するには都合がよい と思うのです。 (2)によりユークリッド幾何学の公理の無矛盾性は証明できない。 (1)によりユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は 公理系Nにふくまれ 多くの証明できない命題があることになります。もちろん 公理定義内では完全性理論は保証されています。 なぜ このようなユークリッド幾何学に こだわる かと申しますと 世の中の 論理(数学、哲学、論理を用いた論文 など)は ユークリッド幾何学的なものが 圧倒的に多いと思うのです。これら論文は ほとんどは一階述語理論で表され かつ ゲーデル不完全性定理 対象論理ではないのです。それら論文の特に(2)に関わる自己証明は出来ない ということは重要であると思うのです。もちろん 自己証明が出来ないと言って間違いとはなりません が 常に 冷静に謙虚に 主張理論の原点を見直すことに 繋がっていると思うのです。勿論、論理構成が出来ていないシロモノは 論外であります。    以上のように理解しているのですが、ユークリッド幾何学にまつわるゲーデル不完全性定理の場外理解は問題ないでしょうか。諸先生のコメント頂けましたら幸甚です。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

公理系Nが、矛盾と、三段論法とを両方含むなら、 任意の命題が、公理系Nにおいて証明可能となる。 「ある命題が、公理系Nにおいて証明可能である」 という命題も含めて。

ok9608
質問者

お礼

質問後1Wになります。ANo.1さん お一人のコメントでしたが  私の理解が 了解されたものと思います。さらにコメントがないことも私の理解が 了解されたものと思います。 読者諸氏に感謝します。

ok9608
質問者

補足

ANo.1さんにお尋ねします。矛盾しているユークリッド幾何学と非ユークリッド幾何学からなるX幾何を考えます。さてその中で未定義領域の複素数の命題 例えば「exp(iθ)=cos(θ)+i・sin(θ)」は三段論法でどう証明するのでしょうか。

関連するQ&A

  • 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。

    私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが 

  • 不完全性定理 ユークリッド幾何学 公理

    専門家の方にお聞きしたいのですが、不完全性定理でいう「自然数論を含む帰納的に記述できる公理系が、ω無矛盾であれば、証明も反証もできない命題が存在する。」において、 ユークリッド幾何学における証明も反証もできない命題=ユークリッド幾何学の5つの公理 ということでよろしいでしょうか?? また、ユークリッド幾何学の5つの公理以外には、ユークリッド幾何学において証明も反証もできない命題は存在しないと考えていましたが、正しいでしょうか?

  • 私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sに

    私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 『例えば無限遠点において平行線は交わるは証明可能である』はその例のように思うのですが 間違っているでしょうか。 問題は 無限遠点が公理を用いて表されるか どうか という先輩のご指摘があり公理をあらためてみてみますと 公理2に線分を限りなく伸ばすことができる とあります。つまり無限遠点は「公理2の限りなく線分を伸ばした点」と理解され 公理の定義を用いることで表されるとおもうのです。間違っているでしょうか。参考までに公理を挙げておきます。 <ユークリッド 幾何学の公理> (公理1)与えられた2点に対して、それらを結ぶ線分をちょうど1つ引くことができる。 (公理2)与えられた線分は、どちらの側にも限りなく伸ばすことができる。 (公理3)平面上に2点が与えられたとき、一方を中心とし、他方を通る円をちょうど1つ書くことができる。 (公理4)直角はすべて相等しい。 (公理5(平行線公理))直線外の1点を通り、その直線に平行な直線は1本に限る

  • ゲーデルの定理

    完全性定理では「任意のモデルで真である文はすべて1階述語論理で証明可能である」 不完全性定理では「自然数論を含む体系は無矛盾である限り、真であっても証明できない 命題が存在する」とありました。 それではこの2つの定理をペアノの公理系に当てはめると「全ての真である命題は証明可能」でありながらどこかに「真であっても証明できない命題が存在する」わけですか? 何だか矛盾するような感じがしますが、そんな訳ありませんよね。 どう考えたらよいのか教えてください。 よろしくお願いいたします。

  • ゲーデルの不完全性定理について

    ゲーデルの不完全性定理について ネットサーフィンをしていたときに、たまたま、ゲーデルの項目を見つけました。 当方、数学は素人なのですが、 ゲーデルの不完全性定理(ある公理系の中には、真偽を明確にできない命題が存在する) を僕たちが生きるこの世界、この宇宙にあてはめて考えると、 この世の中には、論理的には正しいとも間違っているとも証明できないことがらがあるということなのでしょうか。

  • ユークリッド幾何学において 真偽が証明できない問題として 例えば『無限

    ユークリッド幾何学において 真偽が証明できない問題として 例えば『無限遠点で平行線は交わる』は その例と考えますが、合っているでしょうか。なぜなら 無限領域は 定義されていないからです。  ユークリッド幾何学の5公理は有限領域で定義されているとし、その場合に真偽が証明できない問題として 例えば『X・X=-1は根が存在しない』はその例と考えますが、合っているでしょうか。なぜなら 複素数領域は定義されていないからです。  なお 公理は証明対象にならない 命題と考えます。

  • そもそも、ピタゴラスの定理って定理なのでしょうか?

    そもそも、ピタゴラスの定理って定理なのでしょうか? いいかえると、真実なのでしょうか? これは、実は簡単にわかります。証明できません。 なぜなら、非ユークリッド幾何学という反例があるから。 だから、ピタゴラスの定理っていうのは、定理ではなくて、 普通のユークリッド幾何学を展開していく上での、仮定とか前提と考えたほうがいいと思います。 ではなぜ、世の中にたくさんある「ピタゴラスの定理の証明」なるものはなんなのでしょうか? それは、ユークリッド幾何学を特徴づけるピタゴラスの定理よりも、 よりも基本的な公理を仮定していなければなりません。 一般的には、第五公準(平行線は唯一唯一つ)ってのがそうだと思われます。 しかし、その前に、点とか直線とか、距離とか、角度とか、合同とか、たくさんの概念が定義されなくてははなりません。 ところで、数学基礎論では、まず、集合とその間の演算を公理的に定義し、また、自然数と和や積を定義します。 それによって、数論の基本的な結合法則、可換法則、分配法則といったものも、「証明できる」ものになります。 1+1=2というのも「証明できる」ものになります。 同じようにしていけば、ピタゴラスの定理って基礎論的に、公理的に、「証明できる」定理なのでしょうか? 実は、「幾何学基礎論」という本を軽く読んだり、いろいろ検索してみたのですが、ピタゴラスの定理は載ってませんでした。 もしかして、ピタゴラスの定理っていうのは、基礎論的にも、公理的にも、「証明されていない」ものなのでしょうか? ちなみに、sinθ, cosθを、無限級数の和として定義してやって、 それによってユークリッド幾何の回転を定義し、sin^2θ+cos^2θ=1となるので「証明できた」というのは、たぶん、万人は認めないと思います。

  • 非ユークリッド幾何学について

     非ユークリッド幾何学とユークリッド幾何学の違いを示す例として球面上の2点の距離が球面上の大円方向の距離なのか(前者)、その2点のデカルト座標系での座標値から3平方の定理で求まる距離にする(後者)だと聞いたことがあります。地球で考えるなら後者の2点間の線分は地面にめり込んでいますね。(これは正しい理解でしょうか?) この解釈にやや疑問を覚えることがあります。この例だと非ユークリッド幾何学は球面を2次元と捉えているように思います。面だから2次元というのは理解できますが。一方、後者の方はあくまでも3次元です。 非ユークリッド(2次元)、ユークリッド(3次元)というのが不平等のような気がしてアンバランスな感じがします。地球の住人が地球を平板だと思うこと(2次元)と、地球を宇宙から眺めて球体という3次元として捉えるという違いに似ているように思います。このような不平等性は容認されるものでしょうか。それとも私が勘違いしているかも。 よろしくお願いします。

  • 不完全性定理は素人には理解できませんか?

    不確定性理論は概念として理解できます でも不完全性定理は??? ω無矛盾性や公理系とかどうもわかったようなわからんような、、、 正直しっくりこないです どなたか単純な系を例示して御教授いただけませんか?

  • 自然科学は不完全性定理をもコントロールするか

    GPSに特殊相対論と一般相対論による補正がされているというのは有名ですが、とくに一般相対論はリーマン幾何学をもちいています。 リーマン幾何学は非ユークリッド幾何学を扱うことができ、この際、平行線の公理を選択的にコントロールすることで、空間の歪みを叙述することが可能ということがいえるのではないかと思います。 平行線の公理といえば、ゲーデルの不完全性定理が関与するところですが、このようにアインシュタインのような天才は不完全性定理さえも物理学の道具として使いこなした、という印象を私は持っています。この印象は正しいでしょうか。 #ここでの近くのご質問に刺激を受けました。ちょっと筋が違うので新しく質問を立てました。