• ベストアンサー
  • すぐに回答を!

不定積分

今数学Ⅲの不定積分を やっているんですが、 いろんな方法があって こんがらがっています(>_<) 置換積分法とか部分積分法 とかのやり方はわかるのですが いざ不定積分せよ、と聞かれたとき どの方法を使うのか わかりません この式の形だったら この方法を使うといったような パターンはありますか? 教えていただきたいです

noname#106367

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数688
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

それは、できるだけ多くの問題を解いたり、演習問題の解答を見て、経験を多く積むことです。また、積分と微分(逆の関係ですね)の公式一覧表や積分一覧表をみてどの関数の積分の原始関数が何かということを覚えること、うろ覚えの時は原始関数とおぼしき関数を微分してみて、被積分関数になるかで、積分が正しいかを確認することで、記憶を定着したり、すぐ正しいかを確認することで、積分の実力がつきます。 そして、どうしても積分できない時は、積分サイトや積分をしてくれるソフトを利用して、積分からどんな原始関数になるかを知ることです。 ●積分サイト(一般数学計算機能、不定積分、定積分可能) Wolfram.alpha:http://www.wolframalpha.com/ ●Wolfram Mathematica(不定積分専用) Integrater;http://integrals.wolfram.com/index.jsp ●数式処理フリーソフトwxMaxima(一般的な数学問題の計算処理、不定積分、定積分可能) http://sourceforge.jp/projects/sfnet_wxmaxima/releases/

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 不定積分

    ∫e^(-x)sinxdxなんですけども fx=sinx g'x=e^(-x) とおいてやってみたんですが解けません。 あと、不定積分を求めるとき置換積分法を使うのか 部分積分法をつかうのかはどうやったらわかるのですか?

  • 不定積分についてです

    (置換積分) f:[a,b]→[c,d]がC^1級でg:[c,d]→Rが連続であるとき次の式が成立する ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy この定理が成り立つのは良いのですが,不定積分について ∫g(f(x))f'(x)dx =∫g(y)dy が成り立つ理由がわかりません… 部分積分も同様に,定積分の式ならわかるのですが、不定積分について ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) となる理由がわかりません。 大学数学での不定積分のきちんとした定義とともに、 ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) の成り立つ理由がわかる方がいらっしゃいましたら回答よろしくお願い致しますm(__)m

  • 不定積分の証明問題 cotxcosecx

    不定積分の証明問題に困っています。 f(x)=cotxcosecx を積分すると -cosecx になるらしいのですが、それを証明のやり方がわかりません。 部分積分・置換積分がヒントになっているようなのですが、どうやって証明すればよいのでしょうか?

その他の回答 (1)

  • 回答No.2
  • OKNILL
  • ベストアンサー率40% (2/5)

私も、受験生の時に質問者様と同様の悩みを抱いたことがあります。私の場合は、悩みを抱きつつも、練習問題を部分積分法、置換積分法など様々な解法を用いて解き続けていたら、自然とパターンを見抜く力が身についており、この悩みは解決されていました。 不定積分の問題を解くコツとして思ったことは結局、できるだけ多くの問題を解くことなのではないかと思います。 この式の形だったらこの方法を使うといったようなパターンは存在しますが、それを見抜くパターンは存在しません。 不定積分の問題でどの解法を使えばいいのか見抜くには、直感的な要素も必要であると思います。そのため置換積分法や部分積分法の使い方を理解する以上に、慣れることが重要であると思います。 そのためまずは教科書に載っている基礎練習問題で模範解答を求められるように様々な解法を用いて問題に取り組んでみてはいかがでしょうか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 不定積分で

    (logx)^2と(cosx)^2の不定積分が分かりません。 部分積分法でやればできるのでしょうか? cosxの場合3乗なら解けたのですが、2乗は解りませんでした。 どなたかやり方だけでもいいので教えてください。 お願いします。

  • 不定積分できる!

    質問サイトなのにタイトルが肯定文なところに惹かれて来てくだっさたあなたに質問です。 私は基本的な不定積分(高校くらいまでで∧難しすぎないもの)ならできるつもりです。 しかし、三角関数の不定積分がよくわかりません。 たとえば、次の関数の不定積分を求めよ。(xは省略) ア) tan/cos , イ) cos^4 , ウ) 1/sin , エ) (tan/cos)^2 , オ) tan^4 , カ) 1/cos^4 きっとどうせ、置換積分法か部分積分法か式変形の組合せで解くのだと思いますが、三角関数の不定積分は紛らわしいです。 問題の式をちょっと見ただけですぐに解法が思いつくにはどうすればいいのでしょうか。 (別にアからカの答えを聞いているわけではありません。一応なんとか解けます)

  • ∫1/(x^2+1)^2 の不定積分がわかりません

    ∫1/(x^2+1)^2 の不定積分がわかりません 答えは ( 1/2 )*( (x/(x^2+1)) + tan-1(x) ) となるようですが、過程がまったくわかりません。 部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。 見づらく申し訳ありません。画像を参照していただければと思います。 よろしくおねがいします。

  • 不定積分について

    大学の微分積分でてきた問題(答えが無い) で(2X+3)/X^2+9を不定積分しろとあったのですが 分子が分母を微分した結果にならないからlogで積分できないし 部分分数にすることもできずまた分子を分母でわることもできず 積分ができなくて困っています それと(X-1)log(X+1)dxの不定積分とe^2xcosxdxの不定積分を 部分積分法を使ってやってみたのですが何回くりかえしても 式が展開されるだけで困っています

  • 不定積分の解き方で

    不定積分の解き方で こんにちは。 1/(x^4√(a^2+x^2))という不定積分を解きたいのですが、 x=atantやx=asinht,x=1/tなどの置換を試みているのですが、x^4の項をなかなか処理することができません。 そこでまずお聞きしたいのは解答全てではなくてこの形の不定積分を解くときに必要な発想(何で置換するとかどのような形にもっていくのか)などを教えていただきたいのです。 それでしばらく考えてもわからなければまた質問します。 それと不定積分のパターンはとてもたくさんあるように感じるのですが、 頭の中でうまく解き方を整理できるような考え方などがあったら教えていただきたいです。 面倒な質問の仕方ですみません。 よろしくお願いします。

  • (x^3/√(x^2+1))の不定積分

    申し訳ありませんが、画像を作成しましたので参照して頂ければと思います。 (x^3/√(x^2+1)) の不定積分なのですが このように式変形したあと、どのように積分し、答えにたどりつくのかがわかりません。 部分積分などで消えるのかとも試しましたが、うまくいきませんでした・・・ よろしくおねがいします。

  • 不定積分の問題です。教えてください。 

    こんにちは。 ∫1/X^2+1 dxという問題なのですが部分積分法や置換積分法を用いてもうまく解けません。解法を教えてください。

  • 置換、部分積分の証明です。

    数学IIIの置換積分、部分積分の証明の仕方が知りたいです。何かいい本をご存知の方いらっしゃいませんか?教科書にはまったく載っていないので。

  • 不定積分

    こんばんわ。私は今大学一年生で、今学期「解析概要」という授業をとっています。 そこでの不定積分の問題なんですが、分からないものがあったのでよかったら教えてください! (1)∫arcsin(x) dx (2)∫x^2/√(a^2-x^2) dx (1)はarcsin(x)=yとしてx=sin(y)で置換して積分したら、arcsin(x)sin(arcsin(x))+cos(arcsin(x)) と出したんですが、解答はxarcsin(x)+√(1-x^2)となっていました。どうすればこういう答えになるのでしょう? (2)は部分積分で挑戦しましたが出来ませんでした。 よろしくお願いします。

  • 不定積分∫log(1+x)/x dxが分かりません

    不定積分∫log(1+x)/x dxが分かりません。教科書(理工系の微分積分学:学術図書出版)を読み漁ったのですが、見つかりませんでした。部分積分と、置換積分を考えてみて計算したのですが、私のやり方では両方うまくいきませんでした。(参考書としては、マセマの微分積分学の本を持っています。) 置換積分:1+x=exp(t)と置換する。(与式)=∫texp(t)/exp(t)-1 dtとなりうまく計算できません。 それともこれは何かでうまくはさんで解くタイプの問題なのでしょうか?(ハサミウチの原理などを利用) 大本の問題は広義積分の問題で、積分区間は、-1→1となっています。 何か知っていることがありましたら、教えてください。よろしくお願いします。