• ベストアンサー

数学の三角関数の加法定理についてです。解き方もどの公式を使えばいいのか

数学の三角関数の加法定理についてです。解き方もどの公式を使えばいいのかも分からなく全く手が出ません。助けてください。 関数y=sin2乗x-4sinxcosx+5cos2乗xについて、次の問に答えよ。ただし、0≦x<2πとする。 (1)yをsin2x,cos2xで表せ。 (2)yの最大値と最小値を求めよ。また、そのときのxの値を答えよ。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • spring135
  • ベストアンサー率44% (1487/3332)
回答No.2

加法定理のもっとも初歩的な倍角公式だけは使えるように心がけましょう。 倍角公式はsinxの2乗、cosxの2乗、sinx*cosxを処理するのに使えます。 つまり sinxの2乗=(1-cos2x)/2 cosxの2乗=(1+cos2x)/2 sinx*cosx=sin2x/2 です。

doll1mm
質問者

お礼

ありがとうございます。

その他の回答 (1)

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.1

自分でできることは自力でやるように。 わかる所は途中計算を補足に書いて、その先のわからない所だけ 質問して下さい。 ヒントだけ。 (1) 三角関数の半角の公式を使うだけです。 (sinx)^2=(1/2){1-cos(2x)} (cosx)^2=(1/2){1+cos(2x)} sin(x)cos(x)=(1/2)sin(2x) (2) 三角関数の合成の公式 cos(2x)-sin(2x)=(√2)cos(2x+45°) を使う。45°の変わりにπ/4(ラジアン)でも同じです。

doll1mm
質問者

お礼

ありがとうございます。

関連するQ&A

  • 高一 数学 三角関数

    問一 三角形ABCにおいて、AB=3、CA=4、角B=2X、角C=Xとする。 このとき、次の値を求めよ。 (1)cosX (2)sinX (3)BC 問二 0≦x<2πのとき、次の関数の最大値、最小値、またそのときのxの値を求めなさい。 (1)y=sin2乗x+2√3sinxcosx+3cos2乗x (2)y=3sin2乗+4sinxcosx-cos2乗x ちなみに、答えは 問一の(1)2/3 (2)√5/3 (3)7/3    問二の(1)MAXは4(x=π/6と7π/6) MINは0(x=2π/3と5π/3) (2)MAXは2√2+1(x=3π/8と11π/8)、MINは-2√2+1(x=7π/8と15π/8) となっています。どうすれば、このような答えを導けるかできるだけ早く回答願います。

  • 三角関数

    こんばんは。 三角関数の問題なのですが、行き詰ってしまいました(・・;) 誰か助けてください(o>_<o) 1.0≦x<2πのとき、次の不等式を解け。  (1)sin2x>sinx    2倍角の公式を使って2sinxcosx-sinx>0に直し、sinx(2cosx-1)>0としたところで、わからなくなってしまいました。              2.0≦x<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。      (1)y=sinθ-cosθ 三角関数の合成を使うということはわかるのですが、どうやって使えばよいのかがわかりません。 よろしくお願いします(×_×)

  • 高1 数学II 三角関数の問題

    問一 三角形ABCにおいて、AB=3、CA=4、角B=2X、角C=Xとする。 このとき、次の値を求めよ。 (1)cosX (2)sinX (3)BC 問二 0≦x<2πのとき、次の関数の最大値、最小値、またそのときのxの値を求めなさい。 (1)y=sin2乗x+2√3sinxcosx+3cos2乗x (2)y=3sin2乗+4sinxcosx-cos2乗x ちなみに、答えは 問一の(1)2/3 (2)√5/3 (3)7/3    問二の(1)MAXは4(x=π/6と7π/6) MINは0(x=2π/3と5π/3) (2)MAXは2√2+1(x=3π/8と11π/8)、MINは-2√2+1(x=7π/8と15π/8) となっています。どうすれば、このような答えを導けるかできるだけ早く回答願います。

  • 三角関数の加法定理・和積公式の拡張って?

    三角関数の加法定理 cos(α+β) = cos(α)cos(β) - sin(α)sin(β) を3変数に拡張すると、 cos(α+β+γ) = cos(α)cos(β)cos(γ) - sin(α)sin(β)cos(γ) - sin(α)cos(β)sin(γ) - cos(α)sin(β)sin(γ) となりました。 三角関数の和積公式 sin(α) + sin(β) = 2sin{(α+β)/2}cos{(α-β)/2} 三角関数の積和公式 sin(α)cos(β) = (1/2){sin(α+β)+sin(α-β)} も拡張して、 sin(α) + sin(β) + sin(γ) =(積の形) sin(α)sin(β)sin(γ) = (和の形) にできますでしょうか?

  • 数学IIの加法定理・・・

    数学IIの加法定理や2倍角の公式、半角の公式あたりでの問題です。  αが鋭角。 cosα=3/5のとき、次の値を求めよ。   (1) sinα/2     (2)cosα/2  この2問がどうしてもわかりません。 もし求めるのがsin2αとかなら、2倍角の公式→sinαの二乗+cosαの二乗=1 の公式とかで解けるのですが・・・  sinα/2のときがわかりません。どのようにとくのでしょうか。分かる方いらしたら力貸してください。

  • 三角関数の問題がわかりません。加法定理や式変換を用いるのだろうと思うの

    三角関数の問題がわかりません。加法定理や式変換を用いるのだろうと思うのですが、解法と答えを教えてくださる方はいらっしゃいませんか? 問:(sin x+cos x)/(sin x-cos x)=3+2√2のとき、sin x, cos x, tan x の値をそれぞれ求めなさい。 という問題です。 みなさんよろしくお願いいたします。

  • 三角関数の加法定理について

    以下の公式を証明する問題を出されたのですがどの公式を使用して どう証明したら言いか難しく悩んでいます。 問)SINαCOSβ=1/2(SIN(α+β)+SIN(α-β)) よろしくお願いします 加法定理を簡単に覚える方法や証明の仕方はないでしょうか? また、基本の4つさえ覚えておけばいいのでしょうか?

  • 三角関数の加法定理

    三角関数の加法定理の証明についてよく分かりません。 学校の教科書では幾何的な説明を使った証明がのっています。 図がないので説明しづらいのですが、 単位円O、円上の第1象限に点A(cosα sinα) 同じく第4象限に点B(cos-β sin-β)がある。 これを余弦定理と2点間の距離の公式を使って式をたて、加法定理の式となります。 cos(α+β)=cosαcosβーsinαsinβ 確かに点Aが第1象限、点Bが第4象限の点のときはこの式が成り立つのは分かります。 がどんな角度でも成り立つというのが理解できません。 幾何的に説明しているのはこのケースだけだと思うので。 なぜこの証明でどんな角度についても言えるのでしょうか? かなり小学生の頃は天童のはずだったんですがさっぱりです。 分かりやすくよろしくお願いします!

  • 三角関数について質問

    こんばんは。 三角関数について質問があります。 0≦α<360°のとき、関数y=cos2θ+2sinθの最大値と最小値を求めよう。 この問題については cosθ=1-2sin^2θを代入し、 =-2(x-(1)/2)^2+3/2 から最大値、最小値を求められます。 上記のようなやり方で三角関数をつかわず y=sinθ+√3cosθ や y=sinθ+cosθ を最大値、最小値をもとめられるでしょうか? (問題集では三角関数を使い解いています) 不可能な場合、どうしてだめかも教えてください。 よろしくお願いします。

  • 加法定理

    問題を解いてみたのですが、合っているか 自信がありません。 正解しているか教えてください。 問1 αが第二象限の角で、sinα=7/25のとき、次のものを求めよ。 (1)cosα (2)sin2α (3)cos2α (4)tan2 問2 asinθ+bcosθの変形公式を使って、次の式を変形し、 かつ最大値と最小値を求めよ。 (1)sinθ+cosθ (2)sinθ-√3cosθ 自分の出した答は 問1(1)が cos^2α+sin^2α=1 cos^2α+(7/25)^2=1 cos^2α=1-49/652 =576/625 (2)問1が sin2α=2sinαcosα sin2α=2((7/25)(-24/25)=-336/625 問1(3)が cos2α=1-2sin^2α cos2α=1-2(7/25)^2=527/625 問1(4)が tan2α=sin2α/cos2α tan2α=(-336/625)/(527/625)=-336/527 問2 (1)が y=√2sin(θ+45°) よって最大値は√2、最小値は-√2 問2 (2)が y=2sin(θ-60°) よって最大値は2、最小値は-2 よろしくお願いします。