• 締切済み

量子力学における群と対称性について

量子力学における対称性を学んでいます。そして、私の読んでいるテキストに次のような記述がありました。それは 「ある群 G の各元に対応する状態空間上でのユニタリー表現があって、その G に対応するユニタリー変換がハミルトニアンと不変であるとき、系は G に対応した対称性もっていると考える。」 というような記述です。そこで、ご質問なのですがなぜそのような考え方をするのでしょうか。つまり、あるユニタリー演算子があってそれに対応した群をわざわざ持ち出す理由は何なのでしょうか。ある演算子がハミルトニアンと可換であるということは、その演算子が保存するということであり非常に重要であることは納得できるのですが、群を持ち出す理由がよくわかりません。

みんなの回答

  • moumougoo
  • ベストアンサー率38% (35/90)
回答No.1

ある演算子がハミルトニアンと可換である=ある群 G のある元に対応するユニタリー変換とハミルトニアンが可換であるということですよね。ある群 G 全体に対して考える必要があるので、G に対応した対称性もっているというためには、変換をもれなく重複なくGの対称性を表現するために「」の定義が必要なのではないでしょうか?

rotation00
質問者

お礼

ご回答ありがとうございます。まだ納得するに至っていませんが、もう少し考えてみたいと思います。

すると、全ての回答が全文表示されます。

関連するQ&A

  • 量子力学の固有値の問題です。

    量子力学の固有値の問題で、解き方がわかりません。 問題  2状態からなる系のハミルトニアンが以下のように与えられている。    H=g( |1><1| - |2><2| + |1><2| + |2><1| )  このハミルトニアンの固有値、固有状態を求めよ。 というものです。ちなみに、Hは演算子です。 どなたかわかる方いらっしゃいましたら教えてください。 よろしくお願いします。m(__)m

  • 群論について

    ジョージャイの「物理学におけるリー代数」を読んでいるのですが、次の文章の意味がわかりません。 物理系の変換には自然な掛け算則が存在する。g1とg2を2つの変換とすれば、g1g2は、先ずg2を行い、次にg1を行うことを意味する。ただし、合成則を我々が今やったように右から左へと定義するか、左から右へとするかは全くの約束であることに注意しておきたい。どちらでも、完全に矛盾のない変換群の定義を与える。 この変換が量子力学系の対称性である場合には、変換はそのヒルベルト空間を等価なヒルベルト空間に移す。各々の群の元gに対し、ヒルベルト空間を等価なそれに移すユニタリー演算子D(g)がある。変換された量子状態は変換された物理系を表すので、これらのユニタリー演算子は変換群の表現をなしている。かくして対称性の任意の集合に対し、ヒルベルト空間上の対称性の群の表現が存在する。ーヒルベルト空間はその群のある表現にしたがって変換する、と言う。さらにまた、変換された状態はもとのそれと同じエネルギーを持っているので、D(g)はハミルトニアンと交換する。 (引用終わり) 以下の5つの部分がわかりません。 (1)「この変換が量子力学系の対称性である場合」とはどういうことでしょうか?この場合の対称性とは何のことですか? (2)「等価なヒルベルト空間」とはどういう意味でしょうか? (3)「変換された量子状態は変換された物理系を表すので、~変換群の表現をなしている」というロジックがわかりません。 (4)「ヒルベルト空間はその群のある表現にしたがって変換する」とはどういう意味でしょうか? (5)最後に、変換された状態はもとの状態と同じエネルギーを持っているというのは、どうしてですか? 分かる方ご教授ください。よろしくおねがいします。

  • 量子力学、熱力学の参考書について・・・

     量子力学または、熱力学の参考書でお勧めの物ありますか?大学院の受験の参考書として探しています。特に量子力学の参考書のお勧めを教えて頂ければ本当にありがたいです。それぞれ1冊程持っているのですが、以下に関する記述が少ない(特に量子力学)ので困ってます。  キーワードの羅列で申し訳ないのですが、    量子力学では、ハミルトン演算子、フェルミ準位、フェルミ分布関数、フェルミ気体、ハミルトニアン、ヘルムホルツ自由エネルギ、ボルツマン定数、1次元調和振動子、1次元井戸方ポテンシャルに関して...  熱力学では、サイクル系、ファンデルワールス状態式に関して... 問題集でも参考章でもいいのでよろしくお願いいたします。

  • 量子力学の問題

    量子力学の問題 次の問題に答えられません。 解等を教えていただけるとうれしいです。 --- ハミルトニアンが2行2列の行列(1)式で与えられている。 ただしωとθは定数である。以下の問いに答えよ。 (1)Hの固有値E+,E-と、それぞれの固有値に対応する規格化された固有ベクトルψ+、ψ-を求めよ。 (2)シュレティンガー方程式を満たす、時刻tにおける状態ベクトルψ(t)をE+、E-とψ+、ψ-を用いてあらわせ。さらに、初期状態を(2)式として、ψ(t)をωとθであらわせ。 (3)上記(2)の量子状態に対して時刻tにおいて測定を行い、(3)を得る確率を求めよ。 (4)このハミルトニアンは、磁気モーメントμを持つ1/2スピンの粒子が、磁束密度Bにおかれた場合の量子力学を記述する。θの幾何学的な意味を述べて、ハミルトニアン(1)のパラメータωをμとBで表せ。参考としてパウリ行列は(4)である。

  • 量子力学において運動量を微分演算子に代える物理的意味

    量子力学をきちんと物理的,数学的に理解したいので,独学で量子力学を勉強しています.学部時代は量子力学の授業がなかったこともあり,正直分からないことだらけで不思議に思うことがたくさんあります. そのうちの一つとして,ある原子内の電子群を考え,ハミルトニアンHを持つ系だとすると,波動関数Ψの絶対値の二乗(存在確率)で存在する原子内にある一つの電子は,あるエネルギ準位(固有値)εしか取り得ないという考え方をシュレディンガー方程式 HΨ=εΨ で表される固有値問題に帰着するということをとりあえず納得したとすると,線型代数学で出てくる固有値問題 Ax↑=λx↑ のように「ある固有ベクトルx↑に対してある固有値λが決まる」 ということと似ているのでなんとなく分かります. 波動方程式からシュレディンガー方程式を導出していくこともなんとなく分かりました.分からないことは,シュレディンガー方程式の導出として,ハミルトニアンを波動関数に作用させ,ハミルトニアン中に含まれる運動量を微分演算子に代えれば,シュレディンガー方程式になっているということです.この方法は,結果として成り立つだけで,後付けくさいなあと感じました. 過去にも同じような質問をされていた方 http://oshiete1.goo.ne.jp/qa587812.html がいましたので見てみると,運動量を微分演算子に代えるのは数学的には導けるようですが,その導く過程が物理的には分かりにくいと感じました. 量子力学を勉強する前に基礎知識が不十分なのもあるとおもいます. なので,量子力学を勉強する前に習得するべき学問は何かと,どの順番で勉強すれば効率がよいかも教えていただきたいです. (1)量子力学において,運動量を微分演算子に代えることの物理的意味は?もっと一般的に,その他の物理量(角運動量,スピン角運動量など)を演算子に代えることの物理的意味は? (2)量子力学を勉強する前に習得するべき学問は何かと,それらをどの順番で勉強すれば効率がよいか? です.長くなりましたが,よろしくお願いいたします.

  • 量子力学の運動量について

     量子力学ではなぜ運動量を演算子で考えののでしょうか?  xp-px=-ihバーになる理由もわからないので、どうか教えてください、お願いします

  • 解析力学

    私は解析力学をまともに勉強してませんが 興味は持っています 一般的な座標系を導入して運動方程式を書き換えるところが基礎だと思います.一般座標を導入してラグランジュアンやハミルトニアンを導く代わりに、古典論の時空の構造を示すベクトル空間を導入して、それに基づくベクトル方程式から運動方程式を導くことも可能だと思いますが、そのような手法より一般座標による方法の方がいいのでしょうか? また、力学の基本法則は対称性という観点から導けると思いますが、運動量保存則は空間並進対称性、エネルギー保存則は時間反転対称性から導かれるらしいのですが、何となくは理解できますが、ラグランジュアンやハミルトニアンと対称性から証明するにはどうしたらよいでしょうか?

  • ハミルトン力学、ラグランジュ力学の使い方に関して

    量子力学では、ハミルトニアンが出てくるから分かる通り、 ハミルトン力学が主要になります。 そして場の量子論では、ラグランジアン密度がよく出てくることから分かる通り ラグランジュ力学が主要になります。 しかしながら、高校の物理で習うような古典力学では、ハミルトン力学を使うか、ラグランジュ力学を使うか、古典力学を使うかは、決まりがないように思います。 では、未知の問題が与えられたときに、ハミルトン力学を使うか、ラグランジュ力学を使うか、古典力学を使うかはどうやって選べば良いのでしょうか?計算のしやすさで選べば良いとは思うのですが、どうやればそれが分かるのでしょうか? それと、量子力学では、ハミルトン力学、場の量子論では、ラグランジュ力学が重要になるのはなぜなのでしょうか? 量子力学でラグランジュ力学、場の量子論でハミルトン力学があまり使われないのはどういう理由によるものなのでしょうか?

  • ビッグバンと量子力学

    量子力学の考え方でいうと無というのは 「無であって有である」 という様に何もない状態。 を許しませんが電子や素粒子の元になった物質と言うのは あるのでしょうか? 時間も空間もない世界で「ゆらぎ」が発生する理由が やはり分かりません。 量子力学では人間が観察するからこそ有が生まれるのであって 観察しなければ結局は無なのだといいますが何かしらのエネルギー(波)がある事には違いないと思います。 確かにビッグバンが起こり宇宙が生まれた現象は説明できる かもしれませんが結局は第一原因を探る問題は解決できないように 思います。 おねがいします

  • 量子力学と重力について

    等価原理によれば、重力場中の質点の配位空間の軌道は質点の質量には依らないとされています。しかし量子力学では軌道が質量に依存してしまうように思われます。質量Mの質点が作る重力場の中を質量mの質点が運動するとします。(M≫m)。このときボーア半径に相当するものを求めると、  a = h^2/me^2 (ただしhはhバーを表す) の中でe^2をGMmで置き換えれば良いはずだから  a = h^2/GMm^2 となって半径がmに依存してしまいます。そこで教えていただきたいのですが、 (1)現在、重力相互作用も取り入れた統一理論として超弦理論が作られています。超弦理論では上のような等価原理と量子力学の矛盾はどのように説明されるのでしょうか。 (2)素粒子に作用する地球の重力は非常に微弱で測定するのは困難です。しかし中性子干渉計を用いてそのような測定がなされています。その場合、量子力学の計算はハミルトニアンのポテンシャルを重力ポテンシャルとして計算すれば良いのでしょうか。もしそうだとすると上のように等価原理が破れていることになってしまわないのでしょうか。

RC5の電源が入らない
このQ&Aのポイント
  • RC5の電源が急に入らなくなった!他社パワーサプライを使用した場合に有料になるのか不安
  • RC5の電源が突然使用できなくなった。他社パワーサプライの使用による不具合が心配
  • RC5の電源が動かなくなった。他社パワーサプライを使っていた場合、修理費用が発生するか確認したい
回答を見る

専門家に質問してみよう