• ベストアンサー
  • すぐに回答を!

青チャート 基本例題118

1△ABCにおいて、sinA:sinB:sinC=√7:√3:1のとき、この三角形の最も大きい角の大きさを求めよ。 文章はこれだけしかかかれていません。 解説は正弦定理を利用していたんですが、正弦定理とは外接円があるときしか成り立たないですよね、なのにこの問題は正弦定理を利用していました、おかしくないですか?? 先生は外接円は三角形ならなんでも書けるよと言っていました。 でも、問題に外接円にとか書かれてないのに書くというのは非常に納得いきません。  まるで、二等辺三角形でない三角形を自分で二等辺三角形という条件を加えるように。 2x+1、x+2、x+3が鈍角三角形の3辺の長さとなるxの条件を求めよ。 三角形の性質である、一番大きい辺と2,3番目に大きい辺の大小は必ず2番目、3番目の辺を足した合計のほうが大きくなることを利用します。 そこもではわかったんですが、鈍角三角形とはいったいどんな三角形ですか?? また、鈍角三角形になるにはどのような性質を利用し条件を立てればよいでしょうか?? 教えて下さい。お願いします。 .

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数212
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • debut
  • ベストアンサー率56% (913/1604)

1 は、先生のおっしゃる通り、三角形は何でも外接円が描けるから、 たとえ外接円が描いてなくても(描かなくても)正弦定理は成り立つ ということです。 三角形ABCと言った時点で、もう、正弦定理も余弦定理もその他 もろもろの定理も成り立っているよ、だからいちいち円を描かなくても 安心して正弦定理を使っていいよーということです。 2 鈍角三角形は、1つの角が鈍角、つまり90°より大きい角である 三角形です。例えば、120°、45°、15°の三角形とか。 鈍角の余弦はマイナスなので、余弦定理より最大角の余弦がマイナス になるように考えればよいです。 最大角をA(最大角の対辺が最大なので、aは最大の辺)とするとき、 cosA=(b^2+c^2-a^2)/(2bc)<0となればいいわけで、もっと簡単に すれば、bcは正なので、最大辺じゃない2辺のそれぞれの2乗の和 から、最大辺の2乗を引いたものが負になればいいということです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 外接円半径を求める!(正弦定理使用不可)

    個別指導塾で講師をしている大学生です。 先日中学3年生向けのややむずかしめのテキストを解いていて 恥ずかしながらどう解いていいかわからない問題がありました(T T) 問:辺の長さがそれぞれ3,5,7の鈍角三角形がある。   この三角形の外接円の半径を求めよ。 私が普通に解くんであれば正弦定理でどうにかなりますが 中学生用ですので使用不可です。 模範解答は三角形をAB=7 BC=3 CA=5の△ABCとすると CからABに垂線を下ろしその足をHとする。そしてCHの長さを出す。 そのあと弦BCと外接円の中心と円周上の一点(Dとする)を通る三角形を考えると(即ち△DBC) △DBCと△ACHが相似、ということで外接円半径を求めていました。 しかし正直な話、この解答はどういう発想で出てきたものか見当が付きません。 もう少し自然な解答はないでしょうか。よろしくお願いします。

  • 数学I正弦定理

    三角形ABCにおいて、b=3√2, A=45°のとき、外接円の半径Rを求めよ。 (ヒント)正弦定理 a/sinA = b/sinB = c/sinC = 2R の中からa/sinA = 2Rの      部分を取り出して利用する。Rは外接円の半径である。 どなたかこの問題の解答お願い致します。

  • 【正弦定理の証明】

    正弦定理の証明ってできますか? 鈍角三角形の場合なんですが…

  • 三角形の形状

    『三角形ABCにおいて、等式sinA=2cosBsinCが成り立つとき、この三角形はどのような形をしているか。』という問題がありました。 正弦定理と余弦定理から辺の関係に直し、 a^2=c^2+a^2-b^2 b^2=c^2 よって、b=c まではできたのですが、これ以上先に進めませんでした。 解答を見たら、この時点で“b=cの二等辺三角形”と最終的な答えにしていました。僕はa=b=cの正三角形の場合もあるだろうから、“b=cの二等辺三角形”は最終解答にはできないと考えていました。正三角形が二等辺三角形に含まれるのはわかりますが、この問題では三角形の形状を訊いているわけですから、a=b=cなのかa≠b=cなのかははっきり区別すべきではないでしょうか? 宜しくお願いします。

  • 正弦定理・余弦定理

    三角形の頂点A,B,Cについて 2sinA=cosB・sinCが成立するとき、三角形ABCが二等辺三角形となることがあるか。という問題なんですけど、辺BC,CA,ABの長さをa,b,cとすると、正弦定理で左辺=a/R,正弦定理と余弦定理で右辺=(c^2+a^2-b^2)/2ca・c/2R=(c^2+a^2-b^2)/4aR よって、a/R=(c^2+a^2-b^2)/4aR よって、c^2=3a^2+b^2となるところまではわかるんですけど、この後どうすれば良いのかわかりません。

  • 三角形の決定

    『△ABCにおいて、a・sinA=b・sinB ならば、どんな三角形かを答えなさい』という問題で、 正弦定理から、a・a/2R=b・b/2R よって、a=b(a>0、b>0) よって、点Cを頂点とする二等辺三角形となる・・・(答) と解法にあったのですが、a=bだけでは二等辺三角形とは言い切れないのではないでしょうか?正三角形の可能性もあると思うのですが。 よろしくお願いします。

  • 正弦定理のやり方がわかりません

    正弦定理の解き方を教えて下さい。 (1)A=120°、外接円の半径=10のときa (2)a=12、b=60°、c=75°のときb (3)a=1、c=√3、c=120°のときA (4)b=5、外接円の半径R=のときB (5)A=50°、B=100°、c=5、外接円の半径R の問題が全然わかりません。 誰か教えて下さい!!!

  • 正弦定理の外接円

    正弦定理は外接円とも関連してきます。 でも、なんでいきなり外接円!?っていうかんじでした… いきなり外接円とか…急に登場してきて意味が分からないです。 どうして外接円が出てきたのでしょうか? 問題を解くためだけに登場してきたのですか? 回答よろしくお願いいたします。

  • 正弦定理はどんな三角形でも成り立つのか?

    正弦定理の証明では、鋭角鈍角直角三角形においてそれぞれなりたる事が証明されています。ということは、どんな三角形であっても正弦定理は成り立つと言えるのでしょうか

  • 高校数学を教えてください!

    いつもお世話になっております。 解答がついていないので、間違っていた問題があったら教えてください 特に(4)が途中でよく分からなくなってしまったので、教えてください。ヒントでも良いので a=7, b=8, C=120°である三角形ABCについて (1)三角形ABCの面積Sを求めよ    S=1/2×7×8sin120     =14√3 (答) (2)cの長さを求めよ    c^2=a^2+b^2-2ab cosC       =13 (答) (3) 外接円の半径Rを求めよ    正弦定理から    13/sin120 =2R        R = 13√3/3 (答) (4) sinAの値を求めよ    a=7,外接円の半径Rが13√3/3であるから    正弦定理にそれを代入すると    a/sinA =2×13√3/3     sinA =26√3 /21  ?? (5) 内接円の半径rを求めよ    r=2s/a+b+c =3 (答) よろしくお願いします。