• ベストアンサー
  • すぐに回答を!

微分の極限値の問題が解けません

lim x→0 (x^4-2x+3)/(x^6-x^2-2) の極限値を求めよという単純な問題なのですが、分母分子の因数分解がどうしても出きません。よろしくお願いします。

noname#202942

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数189
  • ありがとう数22

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

この場合は、そのままxに0を代入すれば良いですよ。 lim(x→0) (x^4-2x+3)/(x^6-x^2-2) =(0^4-2*0+3)/(0^6-0^2-2) =-(3/2)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 極限値 問題

    極限値 問題 lim[x→0](e^x)^2-1/xを求めなさい。 lim[x→0](e^x)-1/x=1を利用することは想像できるのですが、 どのように解けば良いでしょうか? 因数分解を使って、(e^x)^2-1を(e^x+1)(e^x-1)/xとして、 (e^x+1)・((e^x-1)/x)とすると、答えが∞となります・・・ これは間違ってますよね? ご回答よろしくお願い致します。

  • 極限値

    (1) lim[n→∞]√(x+3)-√(x)/√(x+2)-√(x+1) 分子有理化をして、 分子分母に√(x+3)-√(x)をかけて、 lim[n→∞] 3 /{√(x+2)-√(x+1)}{√(x+3)-√(x)} さらに分子分母をxで割りました。 3/∞になって0になります。 しかし、解答は3です。 (2) 数列{a_n}の極限値を求める。 a_n=1^2+2^2+…+n^2/n^3 こちらは全く分かりません。 分子分母をn^2で割りましたが、 なにも進みません…。 なにかヒントをお願いします。

  • 極限値の問題

    lim(x→1){(x^2+ax+b)/(x-1)}=3を満たす定数a,bを求めよ という問題なんですが lim(x→1)(x-1)=0であるから lim(x→1)(x^2+ax+b)=0 解答にはこのように始まっているのですが この命題の解釈を 「xは1になるのでそれだと分母が0になってしまい、0での除法は数学的にありえないので 分子も0になるしかない」 とこんな感じに僕なりにしてみたんですがあっているでしょうか? それと 微分の問題をある程度やっていて、それなりに解けるようになってきたんですが 未だに極限値というのが微妙な理解です、テキストを読んでも難しい言葉で書かれており、何がなにやらというのが本音です。 今僕が考えている極限値というのは、3次関数のグラフを書いた時に出来る山のような曲線というちょっとわけのわからない理解なんですが 極限値とはなんなのかという簡単な解説をよろしくお願いします。

その他の回答 (2)

  • 回答No.3

因数分解をする必要があるのは、 lim分子 = lim分母 = 0 である分数式の極限 を考える場合だけです。 その場合は、lim因子 = 0 となる因子で 分数式を約分せねばなりませんからね。 lim分母 ≠ 0 であれば、因数分解は不要です。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • f272
  • ベストアンサー率45% (5372/11804)

別に因数分解をする必要はないでしょう。 分子は→3 分母は→-2

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 極限値について

    極限値について教えてください。 1、f(x)=1/xの極限値は存在しますか? 2、lim ax^2+bx/x-3 =12 が成り立つとき、a、bの値を求めよ。   x→3  という問題において、どうして「x→3のとき、分母が0に近づくから  極限値が存在するには分子も0に近づかなければいけない」  のでしょうか?   

  • 極限値を求める問題です。

    次の極限値を求めよ。 lim(x,y)→(1,1) (x-1)^3+(y-1)^3/(x-1)^2+(y-1)^2 (x-1)^3+(y-1)^3が分子で (x-1)^2+(y-1)^2が分母です。 よろしくお願いします。

  • 極限値を求める問題です。

    次の極限値を求めよ。 lim(x,y)→(1,1) (x-1)^3+(y-1)^3/(x-1)^2+(y-1)^2 (x-1)^3+(y-1)^3が分子で (x-1)^2+(y-1)^2が分母です。 よろしくお願いします。

  • 極限値 問題

    極限値 問題 lim[x→0](sin^2x・cosx) /(1-cosx) 1+cosxを分子と分母に掛けて、分母が0を解消して lim[x→0]cosx+cos^2x=2 答えは合っていますでしょうか? ご回答よろしくお願い致します。

  • 微分法 極限値の求め方が分からない・・・

    導関数を先にやっていたのでどうにも極限値の求め方が分かりません。 f(x)=2x^2-4x なら f'(x)=4x-4 と言った感じで導関数の公式を用いてできるのですが、limの問題がさっぱりです。 例えば lim x^2(x+4) 【x→-2】 これだと全てのxに-2を代入して=8となるのに lim x^2+4x-5 / x^2+x-2 【x→1】 は一度分解して  lim (x+5)(x-1) / (x+2)(x-1) としてから (x+5) / (x+2) として、ここに代入して答えが=2となるんでしょうか? 私は最初の段階で代入してしまい失敗します(分母0なんて存在しないですから違うのは分かるんですが) 数値を入れて良いのはどの段階からでしょうか? また、導関数の問題なんですが f(x)=x-3 / 2x+1 と言った感じで分数の形になっている問題は専用の公式みたいな物があるんですか?それとも普通に f'(x)=1 / 2 になるんでしょうか?

  • 極限値の求め方について

    極限値を求める問題で、つまずいたところがあります。 lim x→-∞ (3x+2)/(x^2+1)^1/2 という問題なので、当初は分子と分母をxで割ることで lim x→-∞ (3+2/x)/(1+1/x^2)^1/2に変形し、答えを3と導出したのですが正答は-3とのことです。 x=-tとおき、lim t→∞ (-3t+2)/(t^2+1)^1/2とすれば-3が導出できることはわかったのですが 当初のやり方のどこに不具合があったかわかりません。 分母の(x^2+1)^1/2を、負の値であるxで割ろうとする事が問題なのでしょうか? 自分なりに理由を探索したのですが、いまいち確証が持てません。ご回答お願いします。

  • 極限値の求め方が分かりません

    極限値の求め方が分かりません 例 (1)-2/{√(1-2/x)-1} (x→∞) (2)(x^2+x-12)/(x-1) (x→3) (3)(x^2-9)/(x^2-5x+6) (x→3) (4)(x^2-7)/(x^2-5x+6) (x→3) (1)はx→∞のとき,2/x→0なので分母→0 よって(1)→∞ (2)はx→3のとき,分子→0,分母→2 よってx=3を代入して(2)→0 (3)はx→3のとき,分子→0,分母→0 そこで式を変形すると(x+3)(x-3)/(x-2)(x-3)=(x+3)/(x-2) ここでx=3を代入して6 ここで分からないことがあります. ・分母→0のとき 分子→0なら,式を変形し,分子が0に収束しないならそのままx=αを代入できるのですか? ・(4)((3)のように割れない)はどうなるのですか? ・こういう問題ではどういう決まりがあるのですか?(∞-∞や∞/∞に収束するような形はだめ.など)

  • 無限数列の極限値

    lim{2^(2n-1)}/{(3^n)-1} n→∞ この極限値を求める問題で 分母分子を3^nで割ったところ 分母は1に収束だと分かったんですが 分子がどうなるかわからないのでおしえてください。 おねがいします。

  • 極限値に関して!!

    分数関数の極限値に関して、分母の極限値が「0」ではなく、分子の極限値が「0」という場合もありますよね???

  • 極限値を求める問題です。

    極限値を求める問題です。 画像のような計算の解き方がわかりません。 いうまでもなく極限値を求めろというものです。 分子か分母を有理化して答えを出すのかと試してみましたが どちらにせよ分母か分子が0となって答えが違い 計算が行き詰まってしまいます どのような解き方がありますでしょうか 一番簡単な解答をお願いします ちなみにこの極限値は有限な値(3)となり収束するそうです。