• ベストアンサー
  • 困ってます

sinxとcosxの微分

非常に初歩的な質問で情けありませんが、 以下のようにすると、cosxの微分が-sinxであることを導けません。 (sinx)'=cosx (cosx)'={sin(π/2-x)}' =(sinX)' ## X = π/2 - x とおく =cosX =cos(π/2-x) =cosπ/2×cosx + sinπ/2×sinx =sinx !!!! この導き方のどこに問題があるのでしょうか? よろしければご指摘のほどお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1283
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

>=(sinX)' ## X = π/2 - x とおく >=cosX ここで間違っています。 (sinX)'の'はxでの微分でありXでの微分ではありません。 これは合成関数の微分の式から (sinX)'=(cosX)(X)' となります。 X=π/2-xですから(X)'=-1 つまり、(sinX)'=-cosXとなります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 全くその通りでした。

関連するQ&A

  • y=(2+sinx)^cosxの微分

    y=(2+sinx)^cosxを微分するんですが、 y'=cos^2(x)*(2+sinx)^(cosx-1) こんな素直に答えが出て良いものなのでしょうか。 違ってる気がしてなりません。 本当の答えはどうなるのですか。

  • sinx=cosxを解く

    sin^2x=cos^2xとし、 1-cos^2x=cos^2x cos^2x=1/2 cosx=±1/√2 π/4≦x≦5/4πの範囲で解くと x=π/4,5/4π と教科書に書いてありました。 x=3/4πも答えだと思うのですが、自分の間違いを指摘してください。 お願いします。

  • 三角関数の微分(sinX)'=cosXの証明について

    こんにちは。 (sinX)'=cosXの証明について、 (1)     sinX(cosΔX-1)+cosXsinΔX    =lim----------------------------       ΔX→0    ΔX                cosΔX-1        sinΔX (2)  =sinX × lim----------- + cosX × lim----------           ΔX→0  ΔX      ΔX→0  ΔX  このように証明が進む部分が ありますが、 この部分の意味が良く分かりません。 微分の和を2つに分けて(ここは分かります)、 sinX、cosXをlimの外にだして しまっているようですが、定数なら、 前に出せても、sinXを前に出してしまうのは、 可能なのでしょうか。 数学を勉強したのは、かなり前ですが、 最近趣味で、微分の本を読んでいたら、 sinの微分の部分で、躓いてしまいました。 こういう公式がある、定理がある、 というアドバイスだけでも結構です。 何か分かる人がいましたら、 よろしくお願いします。

  • sinx-cosx=√2sinx(x-π/4) と解説にあったのですが

    sinx-cosx=√2sinx(x-π/4) と解説にあったのですが、どうして、こうなるのかわかりません。よろしくお願いします。sinx-cosxが、2sin(x-π/4)になるまでの展開式を教えてください。

  • cosx/(sinx)^2の微分を教えて下さい。

    cosx/(sinx)^2の微分を教えて下さい。

  • 合成関数の微分法で質問です

    合成関数の微分法で質問です (sinX)'=cosXという公式がありますよね そこで (sin2x)を微分すると 2sin2xになるのですが、 公式的に、 (sinx)'=cosxならば なぜ(sin2x)'=cos2x  こうならないのでしょうか

  • 微分 三角関数

    y=cosx/sinxを微分すると y'={(cosx)'sinx-cosx(sinx)'}/(sinx^2) ={-sinxsinx-cosxcosx}/sin^2x ={-(sin^2x+cos^2x)}/sin^2x =-1/sin^2x で ={-(sin^2x+cos^2x)}/sin^2xからどうして =-1/sin^2xになるんですか? 教えてください

  • sinxの微分の公式について

    sinxをf(x)として微分すると f'(x)=cosxですが、定義から微分するとどうなるんだろうと思い、 https://mathtrain.jp/sinxbibun を見ました。 ここで分子の計算ですが どのように加法定理の式をもちいることで sin(x+h)-sinx が sinx(cosh-1)+cosxsinh と変換できるのでしょうか。 定義からちゃんと理解したいのですが恥ずかしながらこの式変形の方法がわかりません。 ご指導お願い申し上げます。

  • 関数の極値

    問題:第2次導関数を利用して、次の関数の極値を求めよ。 f(x)=e^x cos x (0≦x≦2π) f ' (x) = e^x cosx - e^x sinx = e^x (cosx-sinx) f ''(x) = e^x (cosx - sinx) + e^x (-sinx -cos x) f ' (x) = 0 とすると、sinx - cosx =0 したがって、a sinθ+ b cos θ= √(a^2 + b^2) sin (θ+α) sin α= b / √(a^2 + b^2) cos α= a/ √ (a^2 +b^2) したがって、√2* sin (x-π/4) 0≦x≦2πより、-π/4 ≦ x - π/4 ≦ 7π/4 x - π/4 = 0, π すなわち x=π/4, 5π/4 f '' (π/4) = - 2/√2 * e^(π/4 ) < 0 f '' (5π/4) = 2 / √2 * e^ (5π/4) > 0 よって、f (x) は、 x = π/4 で 極大値 1/√2 * e^(π/4 ) x = 5π/4 で 極小値  - 1/√2 * e^ (5π/4) となる。 ここで質問なんですが、この f(x)=e^x cos x (0≦x≦2π) のグラフの座標のとり方が分からずに困っています。 自分で手書きで模範回答を写して書いてみたのですが、もし分かりにくかったらすみません。 それから、極大値について、グラフを見る限り、f (x) = 2πのときが最も大きいように思ったのですが。 これは間違いなのでしょうか。 教えてください、お願いします。

  • 微分

    次の関数を微分しなさい。 1.y=2x√(x^2+1) 2.y=x/√(1-x^2) 3.y=√(1-x)/√(1+x) 4.y=x^2 sin(x+1) 5.y=sinx cos^2(x) 6.y=sin√(x^2-x+1) 7.y=sin^4(x) cos4x 8.y=√(1+cos^2(x)) 9.y=cosx/(1-sinx) 10.y=(tanx+(1/tanx)) 簡単な説明でも結構です。(○○の公式を使って・・みたいな) 非難や愚痴だけはごめんです。