• 締切済み
  • すぐに回答を!

積分の問題

積分の計算でわからない問題があります^^; どなたか丁寧な解説を教えて下さい(__ ∫xの2乗+10x+7/(x-1)(x+2)の3乗dx ∫dx/eのx乗+e-x乗 ∫0から1までの1/xのp乗dx(pは正の定数) ∫2xの3乗+xの2乗-2x-5/xの4乗-1dx 式がわかりずらくてすいません^^; よろしくお願いします(__

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数35
  • ありがとう数0

みんなの回答

  • 回答No.1

ある程度は自分で勉強してからでないと、 説明を聞いても理解できませんよ? 一個目: 型どおり、有理式の積分。 二個目: y = (e の x 乗) で置換積分すると、 有理式の積分に帰着される。 三個目: ∫εから1までの (1/x の p乗) dx の ε→+0 での極限を求める。 p による場合わけが必要。発散する場合もある。 四個目: 型どおり、有理式の積分。 有理式の積分は、被積分関数を部分分数分解して、 ∫ 1/x dx = log x と ∫ 1/{(x の 2 乗) + 1} dx = arctan x を 使うだけです。 「有理式の積分」を、本かネットで検索のこと。 以上が、わりと丁寧な解説。 どこが丁寧かというと、最初の二行で終わりにしなかったことが。 答えは、自分で出そうね。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学の微分積分の問題がわかりません。

    数学の微分積分の問題がわかりません。 2次方程式 x^2+(t^2)x-2t=0 (tは正の定数)の2つの解をα、βとして、 P=∫[-1→2]{(x+1/α^2)(x+1/β^2)+1/(αβ)}dxとする。 (1)Pをtの式で表すと、P=□+□ (t^2+□/t^2)である。 (2)Pはt=□^(1/4)のとき、最小値□+(□√□)/□ をとる。 α+β=-t^2 αβ=-2t として計算しましたが わかりません。 お願いします!

  • 不定積分

    (1)∫8xdx (2)∫(-6x)dx (3)∫(-9x^2)dx (4)∫10dx (5)∫(6x-2)dx (6)∫(-3x^2+6x-2)dx (7)∫(x+2)(x-5)dx (8)∫(2x-6)^2dx の不定積分を求め、 式と答え合わせてご回答ください…m(_ _)m 不定積分の問題が60問くらい出て…残りは自分でなんとか (あやふやですが) 出来たのですが 上記したやつが 解けず… 良かったら よろしくお願いします。

  • 積分の答えについて

    ∫(3x-5)/(x-2)dxの答え方なのですが、3(x-2)+log|x-2|+C C:積分定数とするか3(x-2)を展開して6も積分定数に含め3x+log|x-2|+Cとするのかで迷っています。 どちらの答えでもない可能性もありますが... 回答よろしくお願いします。

  • 高校数学 積分

    ∫-1→1 (x+2)log(x+2)dx という問題で、部分積分法で解くのに、解答はx+2を積分して(x+2)^2としています。確かにこれだと、処理が簡単なのですが、1/2x^2+2xとしても微分するとx+2になるのですが、これで計算すると、(面倒くさいやり方ですが)答えが合いません。積分定数はなんでもよいのではないのでしょうか?わかりにくい説明ですみませんが、どなたかわかる方、お知恵を貸してください。

  • 定積分の問題です

    解答したものの自信がないので すみませんが、わかる方、これでいいか教えてください。 (1)∫{1→2}(2x-3)^3dx 2x-1=tとおく。 dt/dx=2→dx=dt/2 x │1→3 ─┼─── t │1→3 (原式)∫{1→3}t^3*(dt/2)=1/2[t^4/4]{1→3} =1/2(81/4-1/4)=10 (2)∫1/(x(x+1)=log(x)-log(x+1)+C (Cは積分定数)

  • 不定積分

    ∫{(2x+3)/(x^2-x+1)}dx  を解けです。 ∫{(2x-1+4)/(x^2-x+1)}dx =∫{(x^2-x+1)'/(x^2-x+1)}dx+∫{4/(x^2-x+1)}dx =log(x^2-x+1)+4*∫{1/(x^2-x+1)}dx 上記の式までは分かるのですが・・・。 ∫{1/(x^2-x+1)}dx の不定積分が分かりません。 途中式もあっているか確信はありません。 申し訳ございませんがよろしくお願い致します。

  • 重積分の順序の交換

    非有界な関数f(x,y)を重積分(0≦x≦1,0≦y≦1)することを考えます。 具体的にはf(x,y)=(x-y)/(x+y)^3です。 この時、xで先に積分するか、yで先に積分するかで値が変わることはありますか? 僕が行った計算では、変数変換(x,z)=(x,x+y)とすると、ヤコビアンは1でdxdy=dxdzで、 ∫_0^1 dx ∫_0^1 f(x,y) dy =∫_0^1 dx ∫_x^{x+1} (2x-z)/(z^3) dz =∫_0^1 dx 1/(x+1)^2 = 1/2 zの積分はxを定数として計算しています。 ここで、逆の順序で積分すると、xとyの変数を入れ替えたものは等しいので、 ∫_0^1 dx ∫_0^1 (x-y)/(x+y)^3 dy =∫_0^1 dy ∫_0^1 (y-x)/(x+y)^3 dx = - ∫_0^1 dy ∫_0^1 (x-y)/(x+y)^3 dx =1/2 よって、 ∫_0^1 dy ∫_0^1 (x-y)/(x+y)^3 dx = -1/2 だと思うのです。 また、直感的には、交代式を直線x=yに対称な領域で積分するなら、 ∫_0^1 dx ∫_0^1 (x-y)/(x+y)^3 dy = 0 が正しいとも思えます。 どうかこの辺の事情をお教えください。

  • 積分の計算です。

    積分の計算 ∫1/[(K-x^2)^2+A^2x^2]dx xは-∞から∞です。 K,Aは定数。 この積分はどうすればいいのでしょうか? やはり留数計算でしょうか? ちなみに値はわかっているのですが ∫1/[(K-x^2)^2+A^2x^2]dx =π/AK です。

  • 定積分の計算です。

    定積分のこんな問題です。 定積分 ∫(-2 1) 2x/(x+3) dx の値を求めよ。        上記の(-2 1) とは 2x/(x+3) を -2 から 1 まで積分するということです。 解答は  6-12 log 2 となっていますが、どのように計算するのか分りません。 初心者なので、少し詳しくお教えてください。よろしくお願いします。

  • 積分について

    (1)不定積分∫[(e^6x+2e^4x+e^2x+4)/{e^x(e^x+1)^2}]dx (2)無限積分∫{(∞,0)(e^-x^3)}dx (3)Dを直線y=2-xと曲線y=1+√(1-x^2)で囲まれた領域とする時,   ∫∫[(D){x(x^2+1)}/y^2]dxdy この三つの計算方法を教えてください。