- 締切済み
- すぐに回答を!
ベルヌーイ分布における独立な確率変数とは?
統計学の問題についてです。 【問題】 次式の確率関数f(x)をもつベルヌーイ分布に従う、 互いに独立なn個の確率変数Xi(i=1,2,…,n)がある。 以下の問に答えよ。 f(x)={p(x=1),1-p(x=0)}ただし0≦p≦1 確率変数Xiの期待値と分散を求めよ。 問題を解こうとしたのですが、確率変数Xiがよくわかっていません。 ベルヌーイ分布はB(1,p)で、取りうる確率変数は0か1の2つであるのに 「互いに独立なn個の確率変数Xi(i=1,2,…,n)」について考えるというのは どういう意味なのでしょうか? 概念的なものが全然理解できていませんので、その辺りも踏まえて 回答をしていただけたらと思っています。よろしくお願いいたします。
- irastive
- お礼率37% (3/8)
- 数学・算数
- 回答数1
- 閲覧数780
- ありがとう数5
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- 回答No.1
- takurinta
- ベストアンサー率71% (64/90)
Xiの期待値と分散はiと関係なく求まります。 E(Xi) = 1*p + 0*(1-p) = p E(Xi^2) = (1^2)*p + (0^2)*(1-p) = p V(Xi) = E(Xi^2) - [E(Xi)]^2 = p - p^2 = p(1-p) 互いに独立なn個のXiを考えているのは、次の問題で確率変数Yn = ΣXiの分布関数やら期待値やら分散やらを計算する予定であるからだと思います。
関連するQ&A
- 統計学の確率変数、確率分布について
統計学で確率変数や確率分布という概念が出てくるのですが、本の説明を読んでも抽象的でよく理解できません。 そこで確率変数や確率分布について、分かりやすい具体的な例を交えて説明して欲しいです。よろしくお願いします。
- 締切済み
- 数学・算数
- 確率変数の分布の問題について質問です
確率変数の分布の問題について質問です 私は高校生で、経済学に興味があり、統計学を自習しておりますがわからない問題があるので質問させていただきます 1、ポアソン分布(f(x)=(e^-λ*λ^χ)/χ! χ=0,1、2・・・)の積率母関数がe^{λ(e^t-1)}となることを示し平均と分散をもとめよ 2(1)連続確率変数χが (f=(χ)e^(-χ) χ>0のとき ) (=0 xは0以下のとき ) なる密度関数をもつ時y=-2x+5で定義されるyの密度関数を求めよ (2)χが正規分布N(μ、σ^2)に従う時χ=logeyなるy すなわちy=e^χは次の密度関数を持つことを証明せよ。 (f(y)={e^{-(logy-μ)^2/yσ√(2π)}}/{yσ√(2π)} y>0のとき ( =0その他のとき またyの平均はexp(μ+(σ^2)/2) 分散はexp(2μ+σ^2)[exp(σ^2)-1]となることを導け
- 締切済み
- 数学・算数
- パラメータが分布している確率変数の期待値
ポアソン分布に従う確率変数(ポアソン確率変数とします)を考えたときに平均、分散を決めるパラメータλが定数ではなく、 確率変数である場合期待値はどうなるのかを知りたいのですがどなたかお教えいただけないでしょうか? 具体的にはをP[λ]はパラメータが定数λであるポアソン確率変数を表わすとします。 さらに別に独立な確率変数Xを考えたとき (1) E{P[X]}=E{X} となるかどうか、また多項式で表わされる関数fに対しても (2) E{P[f(X)]}=E{f(X)} とならないでしょうか? 2つともモンテカルロ法で期待値を比べたところほとんど等しくなったのですが、理論的な根拠がないのです。よろしくお願いします。
- ベストアンサー
- 数学・算数
- ベルヌーイ分布というものがありますが、もし確率変数Xが負になった場合、
ベルヌーイ分布というものがありますが、もし確率変数Xが負になった場合、このモーメント母関数はどのように求めればよいのですか? 例えば、Xが±1の場合などです。
- ベストアンサー
- 数学・算数
- 確率変数の和の平均値と分散と確率分布
確率の問題でどうしても解けない物があります。どなたか解き方を教えて貰えませんでしょうか。お願いします。 問題) 確率変数 Xi(i=1,2,…,N) は互いに独立であるが, それぞれ平均値i (E(Xi)=i) のポアソン分布に従う. この確率変数の和 Y= (N Σ i=1) Xi の平均値と分散を, Nの関数として求めよ. さらに,Yの確率分布 P(Y=n) を求めよ.
- ベストアンサー
- 数学・算数
- 大学の統計学です 確率母関数、ベルヌーイ分布、モーメント母関数
明日試験なのですが、勉強不足で全然わかりません・・・・ ・2項分布B(n,p)の確率母関数を計算せよ ・幾何分布Ge(p)の確率母関数を計算せよ ・X1,X2....Xnを互いに独立でベルヌーイ分布に従うn個の確率変数とするとき、Sn=X1+X2+...+Xnの分布が2項分布となることを示せ またSn/nの平均値と分散を求めよ ・指数分布Exp(θ)のモーメント母関数、平均値(期待値)、分散を計算せよ ・2回のサイコロ投げにおいて、Xを最初の目、Yを2回目の目とするとき、Z=X+Y,W=X-Yとおく (1)ZとWの平均値を求めよ(2)ZとWの分散をもとめよ(c)ZとWの共分散を 求めよ ・X1,X2....Xnを互いに独立で同一の分布に従う確率変数とする。 E(Xi)=μ、V(Xi)=σ^2、i=1,....,nとしX1,X2....Xnの標本平均をZ=1/n(X1,X2....Xn)とおく。 E(Z)とV(Z)を計算せよ わかる方教えていただけたら嬉しいです!!!! よろしくお願いします。
- ベストアンサー
- 数学・算数
- 確率変数について
確率変数の問題ができなくて困ってます。4問なんですけど、 (1)確率変数Xは母平均0、母分散1^2の標準正規分布N(0、1^2)に従うとき、上側確率が0、0050となる確率点を示せ。 (2)確率変数Xは母平均1、母分散9の標準正規分布N(,3^2)に従うとき、不等式4<X<7を満たす確率を示せ。 (3)確率変数Xが自由度60のt分布に従うとき、上側確率が0、025となる確率点を示せ。 (4)確率変数Xが自由度9のX^2分布に従うとき、下側確率が0、05となる確率点を示せ。 以上が分かりません。分かる問題だけでも結構なので解る方は、やり方も教えて頂けると嬉しいです。
- 締切済み
- 数学・算数
質問者からのお礼
返信が遅くなってしまいまして申し訳ありません。 自分でどういう意味なのか少しずつわかってきました。 もう少し深く考えていきたいと思います。 回答していただき、ありがとうございました。