• 締切済み

数列の証明について

数列の証明について質問です。 lim(n→∞){2(a_n+1)-a_n}=A・・・(1) ならば、lim(n→∞)a_n=Aが成り立つことを示せという問題です。 私はlim(n→∞)a_n=Bとおいて lim(n→∞)a_n+1=lim(n→∞)a_n という事を使い、 (1)の左辺がBとなることより B=Aを示しました。 しかし、私の回答では、lim(n→∞)a_nが収束する事を証明してないので、lim(n→∞)a_n=Bと置くのはダメみたいです。 (1)が成り立つとき、lim(n→∞)a_nが収束することの証明をお願いします。

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

ちょっと考えてみましたが, #1 でいわれるように ε-δ (つまり lim の定義) に戻れば証明できるような気がします. (1) から 任意の ε>0 に対してある定数 M が存在し, すべての n ≧ M に対して |2a_(n+1) - a_n - A| < ε です. これは a_n/2 + A/2 - ε/2 < a_(n+1) < a_n/2 + A/2 + ε/2 と等価で, さらに展開していくと a_M+/2^k + A(1 - 1/2^k) - ε(1 - 1/2^k) < a_(M+k) < a_M/2^k + A(1 - 1/2^k) + ε(1 - 1/2^k) となります (あってるかな?). ここで全体から A を引くと a_M/2^k - A/2^k - ε(1 - 1/2^k) < a_(M+k) - A < a_M/2^k - A/2^k + ε(1 - 1/2^k) [※] です. ここで, 最終的に示したいのは 任意の ε'>0 に対して M' が存在し, すべての n ≧ M' に対し |a_n - A| < ε' です. [※] から |a_(M+k) - A| < |a_M/2^k| + |A|/2^k + ε(1-1/2^k) が言えますから, この 2つの式を比較して ε' から適切に ε や k を与えればよいということになります. ... なんというか, 誘導するより自分で書いた方が楽だなぁ (苦笑)

27142714
質問者

補足

回答ありがとうございます。 やってる事はとても理解しやすかったです。 三角不等式を用いて |a_(n+1)|<ε/2+|a_n/2+a/2| まで変形はできました。 しかし、 a_n/2 + A/2 - ε/2 < a_(n+1) < a_n/2 + A/2 + ε/2 の形にできませんでした。 他は大変分かりやすかったです。 ありがとうざいました。

全文を見る
すると、全ての回答が全文表示されます。
  • rabbit_cat
  • ベストアンサー率40% (829/2062)
回答No.1

>(1)が成り立つとき、lim(n→∞)a_nが収束することの証明をお願いします。 この証明をすることは、つまり、lim(n→∞)a_n=A を示すことになると思います。 大学生なんだと思いますが、収束することを、きちんとε-δで表わしてみればいいのでは。

27142714
質問者

補足

回答ありがとうございます。 確かに、lim(n→∞)a_n=Aとなります。 それは、lim(n→∞)a_nが存在すると仮定して解いた結果、Aとなるだけで、Aが収束することの証明はしてないのではないでしょうか?証明のやりかたがあるのでしたら、回答をお願いします。 これは、関数でないのでε-δ論法は使わないで良いみたいですね・・・ 回答に質問してしまい、すいませんでした><

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 数IIIの数列の極限に関して

    a[1]=5 , a[n]=(13a[n-1]-15)/4(a[n-1]-1) (n≧2)で与えられる数列 がn→∞で発散か収束か調べ、収束するならば極限値を示せという問題なんですが とりあえずlim[n→∞] a[n]=∞と考えると a[n]=13/4 - 1/2(a[n-1]-1) より 左辺=∞ 右辺=13/4 となって矛盾するので収束するだろうなということは分かったんですが、 その後収束値をどう出せばいいか分かりません。 どなたかご教授願います。

  • 数列の収束と極限の問題

    数列の収束と極限の問題 はじめまして。最近数学を少し勉強し始めた者です。 頭の出来が良くない故、また独学故に多く質問させて貰うかもしれませんがよろしくお願いします。 a[1] = root(2), a[n+1] = root(2a[n])で定義される数列{a[n]}が収束することを証明し、極限値lim a[n] を求めよという問題なのですが、分かりません。 収束は、ダランベールの判定法を使おうと思い、lim a[n+1]/a[n] = lim root(2a[n])/a[n] = lim root(2/a[n]) まで求めたのですが、これが1より小さいことが分かりません。 極限値のほうは全然です。 どなたかご助言お願いします。

  • 数列の証明

    大学の課題で出された数列の証明問題です。 レベルは恐らく高校くらいだと思います。 数列が苦手で、どうしてもわからないので質問します。 正の実数a、b(a>b)に対して、数列{a(n)}{b(n)}を a(0)=a、 b(0)=b a(n+1)=(a(n)+b(n))/2、 b(n+1)=√a(n)b(n) (n≧0) で定義されるものとする。この時、 1、{a(n)}が単調減少であること、{b(n)}が単調増大であることを示せ。 2、{a(n)}が単調減少かつa(n)≧b、{b(n)}が単調増大かつb(n)≦aより、{a(n)}および{b(n)}は収束する。この時、{a(n)}の極限値と{b(n)}の極限値が一致することを示せ。 解答・解説できる方、よろしくお願いいたします。

  • 数列の収束

    数列の問題なのですが a_(n+1)=√2^(a_n) という数列で (1) a_0=2,a_0=4の時,2,4に収束することを示せ。 (2) a_0<2の時,lim(n→∞)a_n=2を示せ。 (3) a_0>4の時,lim(n→∞)a_n=∞を示せ (4) 2<a_0<4のとき,lim(n→∞)a_n=2を示せ。 という問題なのですが,(1)以外がどう手を付けて良いのかわかりません>< どなたか解説お願いします。

  • 数列が収束するかの証明問題

    数列{a_n}{b_n}を写真のように定める。 (a_n,b_nはすべて正数とする) a_n,b_nが同じ値に収束することをしめしなさいという問題なのですが、 流れとしては、 1) a_n=b_nならば代入すれば、a_(n+1)=b_(n+1) 数学的帰納法(?)で数列{a_n}{b_n}は同じ値に収束する 2) a_n>b_nとして、 b_n=√(b_n*b_n)<√(a_n*b_n)=b_(n+1) a_n=2(a_n)^2/2(a_n)>2a_n*b_n/a_(n)+b_n=a_(n+1) (ここは計算すると、不等号が成り立ちますが、省略します。) またa_(n+1)<b_(n+1) (0<(a_n-b_n)^2から計算すれば出ますので省略します) これをまとめてb_n<a_(n+1)<b_(n+1)<a_nとなる 3) 次にa_n<b_nのときは 上記と同じような計算で b_(n+1)<b_n a(n+1)>a_n a_(n+1)<b_(n+1)がえられる。 2)3)の結果を合わせて a_n>b_nの場合は、a_(n+1)<b_(n+1)に、 a_n<b_nの場合はa_n<a_(n+1)<b_(n+1)<b_n…(1)となる。 nが2以上で(1)が無限に繰り返されていき、a_2<a_3<a_4<a_5<...<b_5<b_4<b_3<b_2が成立するため{a_n}{b_n}はともに有界であり、n=2以上で {a_n}は単調増加、{b_n}は単調減少であるとわかる。よってともに収束する。 数列{a_n}の収束値をA、数列{b_n}の収束値をBとして 与式に代入するとA=Bがえられ、数列{a_n}b_n}は同じ値に収束することがわかる。 といった感じ大まかにはあってますか?

  • 収束しない数列でチェザロ総和みたいなものを考えると

    異なる正の数a,bに対し、 数列a[n]:a,b,a,b,a,b,… は収束しないですが、 S_1[n]=(a[1]+a[2]+…+a[n])/n としたとき、 lim[n→∞]S_1[n]=(a+b)/2 と収束し、そのようなものをチェザロ総和といいます。 では、 S_2[n]=√[(a[1]*a[2]+a[1]*a[3]+…+a[1]a[n]+a[2]a[3]+…+a[n-1]a[n])/{n(n-1)/2}] としたとき、 lim[n→∞]S_2[n] はどうなるのでしょうか? さらに、lim[n→∞]S_3[n]、…、や、それらの収束の相互関係(大小関係や収束のしやすさ)などについて、なにかご存知のことがありましたら教えていただけないでしょうか?

  • limAnBn=AlimBn の証明

    {An}(n≧1)は収束列で、limAn(n→∞)=A≧0とし,{Bn}(n≧1)は有界数列とする。そのとき、 lim(n→∞)AnBn=A×limBn(n→∞) となることを証明せよ。 という問題が分かりません。 Bnが limBn(n→∞)=B≧0 の収束列の時に lim(n→∞)AnBn=AB  となるのは分かるのですが……。 ヒントや指針だけでもいいので、どなたか回答お願いします。

  • 有界な単調数列の証明(再掲)

    こちらの皆様のご指導のもと、以下の単調数列の証明問題を解いてみました。 証明が変なところがあれば、ご指導よろしくお願いします。 【問題】 数列{ 1-(1/n) }/{ 1+(1/n} }[n=1,2,3,...]は 有界な単調数列であるか? 理由とともに、単調な場合には、 単調増加であるか単調減少であるかについても求めよ。 【証明】 まず、有界かどうかについて証明する。 n→∞とすると、 lim[n→∞] { 1-(1/n) }/{ 1+(1/n} } =lim[n→∞] (n-1+2-1)/(n+1) =lim[n→∞] 1-2/(n+1)=1 よって、有界。 つぎに単調増加について証明する。 (n-1)/(n+1) = (n+1-2)/(n+1) = 1-2/(n+1)と変形させることにより、 1より小さいことがわかる。 また、2/(n+1)は単減少であることより、-2/(n+1)は単調増加。 よって、1-2/(n+1)も単調増加であることが証明される。 ∴数列{ 1-(1/n) }/{ 1+(1/n} }[n=1,2,3,...]は、 有界な単調増加である。

  • 階差数列です。早急に。。

    数学Aの問題です。 階差数列なのですが、例えばbのn+1項目はb“n+1”と表すのでお願いします。 問題::: b“1”=1、b“n+1”=b“n”+6n+1をみたす数列{b“n”}について、 (1)一般項b“n”を求めよ。 (2) 初項から第n項までの和S“n”を求めよ。 :::::::: (1) ですが、b“n”を左辺に移項して階差数列にするまでは分かります。 移行した後にシグマを使うと思いますが、その時に左辺をなんと書くのか、から後が分かりません。お願いします。 (2)もお願いします。。

  • 複素数列の収束をε‐N論法により証明する

    複素数列の収束をε‐N論法により証明する 下の画像の問題が分かりません。 |an-a|<ε に当てはめて左辺を変形していったのですが 途中から分からなくなりました。 分かる方教えて下さい。

一部に印刷むらが出る
このQ&Aのポイント
  • EP-806ARを使用しているが、一部のむらが出る
  • EPSON社製品で使用しているEP-806ARの印刷時に一部のむらが発生しています
  • EP-806ARの印刷において、一部にむらが生じる問題が報告されています
回答を見る