• 締切済み
  • 困ってます

位置ベクトルの応用問題(数学Bより)

(※以下PA、PBなどの英語はベクトルを表します   またy/xはx分のyとします) Q. △ABCと点Pに対して、等式2PA+3PB+PC=0 が成り立つ時、点Pはどのような位置にあるか。 A. 点Aに関する位置ベクトルを考えて、等式を変形すると -2AP+3(AB-AP)+(AP-AC)=0 整理して6AP=3AB+AC すなわちAP=2/3×3AB+AC/4=2/3×3AB+AC/1+3 よって、辺BCを1:3に内分する点をQとすると Pは線分AQを2:1に内分する点である。 この問題の意味がさっぱりわかりません; ちなみに僕は高校二年生です。 どなたか理解できるように解説をつけたしてくれませんか?

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • simaku
  • ベストアンサー率31% (12/38)

AP=2/3×(3AB+AC)/1+3 ここまでの変形はわかりますよね ここで直線ABをm:nに内分する点Pの位置ベクトルは mB+nA/m+nなので、 (3AB+AC)/1+3 はBCを1:3に内分する点(Q)をあらわします。 そしてAP=2/3AQとなるのでPは線分AQを2:1に内分する点になります

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトルの問題

    AD//BC、BC=2ADである四角形ABCDがある。点P,Qが ↑PA+2↑PB+3↑PC=↑QA+↑QC+↑QD=↑0 を満たすとき、 (1)ABとPQが平行であることを示せ。 (2)3点P,Q,Dが一直線上にあることを示せ。 (1) AD//BC,BC=2ADから ↑BC=2↑AD=2↑AD ↑AC-↑AB=2↑AD ↑AC=↑AB+2↑AD・・・(1) さらに↑PA+2↑PB+3↑PC=↑0から、 (↑AA-↑AP)+2(↑AB-↑AP)+3(↑AC-↑AP)=↑0 6↑AP=2↑AB+3↑AC (1)を代入すると 6↑AP=2↑AB+3(↑AB+2↑AD) =5↑AB+6↑AD ↑AP=(5/6)↑AB+↑AD・・・(2) また、↑QA+↑QC+↑QD=↑0から (↑AA-↑AQ)+(↑AC-↑AQ)+(↑AD-↑AQ)=↑0 3↑AQ=↑AC+↑AD (1)を代入すると、 3↑AQ=(↑AB+2↑AD)+↑AD    =↑AB+3↑AD ↑AQ=(1/3)↑AB+↑AD・・・(3) ここで、↑PQ=↑AQ-↑AP を 計算すると(2)、(3)より、 ↑PQ={(1/3)↑AB+↑AD}-{(5/6)↑AB+↑AD} =(-1/2)↑AB・・・(4) ∴ ↑PQ=(-1/2)↑AB よって、ABとPQが平行である。 (2)3点P,Q,Dが一直線上にあることを示せ。 ↑PD=↑AD-↑AP (2)を代入して、 ↑PD=↑AD-{(5/6)↑AB+↑AD}   =(-5/6) ↑AB   =(5/3)↑PQ よって、3点P,Q,Dは一直線上にある こうやると教えてもらったんですけど、合っていますか? こういうタイプの問題はとりあえず基準点を定めて位置ベクトルに直せばいいんですか? それとも他にいいやり方があるんですかね?(x_x;)

  • ベクトルの問題 数学IIB

    正三角形ABCの二辺AB、BC上に点P、QをAP:PB=1:1、BQ:QC=2:1となるようにとる。点Aから直線PQに垂線AHを引く。このとき、ベクトルAHをベクトルAB、ベクトルACを用いて表せ。 この問題でもう3時間ちかく悩んでいるのですが・・・まったく解ける気配がゼロなので質問させていただきます。 ベクトルAB=ベクトルx、ベクトルAC=ベクトルyとしてこれを用いてベクトルAQ、QPを表すことはできました。 ・・・がこれ以上どうやっても先に勧めません。 どなたかヒントをください! よろしくおねがいします。

  • 高校数学B; ベクトル 添削

    実際の入試で減点されるかどうか不安になったので、(2)の添削をお願いします。 [問] 四面体ABCDがある。点Pが 10PA↑ = PB↑ + 2PC↑ + 3PD↑ を満たしている。 (1) AP↑ を AB↑, AC↑, AD↑ を用いて表せ。      [解答] AP↑ = -(AB↑ + 2AC↑+ 3AD↑)/4 . (2) 直線APと三角形BCDとの交点をQとしたとき、次の式を満たす実数s, t, k の値を求めよ。    BQ↑ = sBC↑ + tBD↑    AQ↑ = kAP↑   [解答] (1)より AP↑ = -(AB↑ + 2AC↑+ 3AD↑)/4 ...(a)        BCを2:1に内分する点をEとすると (a) は、        AP↑ = -{3*(AB↑ + 2AC↑)/3 + 3AD↑}/4            = -(3AE↑ + 3AD↑)/4            = -3(AE↑ + AD↑)/4 ...(b)       EDを2:1に内分する点をFとすると (b) は、        AP↑ = -3/4 * (2AF↑)            = -3/2*(AF↑)       以上により添付図を得る。       このとき点Fが点Qである。      ............................................ あとは計算してs, t, kを求めるだけです。 ここで点Fと点Qは一致すると断言して良いのでしょうか。 よろしくお願いします。

  • 至急!位置ベクトルの問題の解き方を教えてください!

    △ABCと点Pについて、等式2PAベクトル+3PBベクトル+4PCベクトル=0ベクトルが成り立っているとき、点Pはどのような位置にあるか。 という問題です。 できるだけ詳しく分かりやすく教えてくださると嬉しいです。 よろしくお願いしますm(__)m

  • 高校のベクトルの問題ですが教えてください

    三角形ABCの内部に点Pがあり、6PA+4PB+5PC=0が成り立つ。 (PA,PB,PC,0にはベクトルを表す記号→がついている。) AP=4/15AB+1/3ACであるとする。 (AP,AB,ACにはベクトルを表す記号→がついている。) 直線APと辺BCの交点をDとするとき  BD:DC=           AP:PD= のふたつを教えてください。

  • 数学 平面ベクトル 解き方を教えてください

    (1)△ABCにおいて辺BCを2:1に外分する点をP、辺ABを1:3に内分する点をQ 辺CAを3:2に内分する点をRとする。 AB=b AC=cとおいて次のベクトルをb、cを用いて表せ。 (1)AQ、AR、AP、PQ、PR (2)3点P,Q,Rは一直線上にあることを示せ。 (3)QR:RPを求めよ (2)△ABCにおいて、AB=b AC=cとおく。辺ABを1:2に内分する点をD、辺ACを2:3に内分する点をEとする。また2つの線分CDとBEの交点をPとし、直線APと辺BCの交点をQとする。 (1)BP:PE=s:(1-s)とするときAPをs、b、cを用いて表せ。またCP:PD=t:(1-t)とするとき、APをt、b、cを用いて表せ。 (2)APをb、cを用いて表せ (3)AQをb、cを用いて表せ 類似したような問題を参考にして解いてみたのですができませんでした。 解法の手順も教えてもらえるとありがたいです。

  • 数Bについて

    △ABCと点Pがあり、等式4ベクトルPA+5ベクトルPB+7ベクトルPC=0ベクトルが成り立つとき (1)ベクトルAPをベクトルAB、ベクトルACで表せ。 (2)点Pはどんな位置にあるか。 よろしくお願いします(__)

  • ベクトルの比

    三角形ABCとその内部に一点Pがあり、等式4PA↑+2PB↑+3PC↑=0↑が成り立っている。 APの延長とBCtの交点をQとするとき、BQ:QC,:AP:PQの比を求めよ。 等式をAP↑=2/9AB↑+1/3AC↑にまで変形したとはどうやればいいですか?

  • ベクトルの問題

    平面上に三角形ABCがある。 点Pを  8PAベクトル+5PBベクトル+7PCベクトル=0 を満たすようにとる。 直線APと直線BCの交点をMとすると  AMベクトル=○ABベクトル+○ACベクトル と表される。 三角形ABMと三角形ACMの面積の比は  △ABM:△ACM=○:○ で与えられる。 この問題の○の部分を答えたいのですが、わかりません。 APベクトルの直線上にAMベクトルがあると思ったので 8PAベクトル+5PBベクトル+7PCベクトル=0 の式からAPベクトルをABベクトルとACベクトルを使って求めることはできたのですが、そこからAMベクトルを求めることができません。 面積については考え方もわからないので解説よろしくおねがいします。

  • ベクトルの問題について

    三角形ABCの内部の点Pが、2PA+PB+3PC=0(ベクトルの矢印は省略しました) を満たしている。 (1)直線APと辺BCの交点をDとする。比AP:PDを求めよ 点Pは動点なので、点Aを基準にして条件を書き直して、 -2AP+AB-AP+3(AC-AP)=0 ∴AP=(AB+3AC)/6 ここまであっているかよくわからないのですが、 ADがうまく求められません。 アドバイスよろしくお願いします。